henry000 commited on
Commit
31cab2b
·
1 Parent(s): 76317da

🎨 [Update] pre-commit module, add isort

Browse files
.pre-commit-config.yaml CHANGED
@@ -6,3 +6,9 @@ repos:
6
  language_version: python3 # Specify the Python version
7
  exclude: '.*\.yaml$' # Regex pattern to exclude all YAML files
8
  args: ["--line-length", "120"] # Set max line length to 100 characters
 
 
 
 
 
 
 
6
  language_version: python3 # Specify the Python version
7
  exclude: '.*\.yaml$' # Regex pattern to exclude all YAML files
8
  args: ["--line-length", "120"] # Set max line length to 100 characters
9
+
10
+ - repo: https://github.com/pre-commit/mirrors-isort
11
+ rev: v5.10.1 # Use the appropriate version or "stable" for the latest stable release
12
+ hooks:
13
+ - id: isort
14
+ args: ["--profile", "black", "--verbose"]
config/config.py CHANGED
@@ -1,5 +1,5 @@
1
  from dataclasses import dataclass
2
- from typing import List, Dict, Union
3
 
4
 
5
  @dataclass
 
1
  from dataclasses import dataclass
2
+ from typing import Dict, List, Union
3
 
4
 
5
  @dataclass
model/module.py CHANGED
@@ -48,10 +48,12 @@ class Conv(nn.Module):
48
  # RepVGG
49
  class RepConv(nn.Module):
50
  # https://github.com/DingXiaoH/RepVGG
51
- def __init__(self, in_channels, out_channels, kernel_size=3, padding=None, stride=1, groups=1, act=nn.SiLU(), deploy=False):
 
 
52
 
53
  super().__init__()
54
- self.deploy = deploy
55
  self.conv1 = Conv(in_channels, out_channels, kernel_size, stride, groups=groups, act=False)
56
  self.conv2 = Conv(in_channels, out_channels, 1, stride, groups=groups, act=False)
57
  self.act = act if isinstance(act, nn.Module) else nn.Identity()
@@ -73,15 +75,17 @@ class RepConv(nn.Module):
73
  weights = conv.weight * t
74
 
75
  bn = nn.Identity()
76
- conv = nn.Conv2d(in_channels = conv.in_channels,
77
- out_channels = conv.out_channels,
78
- kernel_size = conv.kernel_size,
79
- stride=conv.stride,
80
- padding = conv.padding,
81
- dilation = conv.dilation,
82
- groups = conv.groups,
83
- bias = True,
84
- padding_mode = conv.padding_mode)
 
 
85
 
86
  conv.weight = torch.nn.Parameter(weights)
87
  conv.bias = torch.nn.Parameter(bias)
 
48
  # RepVGG
49
  class RepConv(nn.Module):
50
  # https://github.com/DingXiaoH/RepVGG
51
+ def __init__(
52
+ self, in_channels, out_channels, kernel_size=3, padding=None, stride=1, groups=1, act=nn.SiLU(), deploy=False
53
+ ):
54
 
55
  super().__init__()
56
+ self.deploy = deploy
57
  self.conv1 = Conv(in_channels, out_channels, kernel_size, stride, groups=groups, act=False)
58
  self.conv2 = Conv(in_channels, out_channels, 1, stride, groups=groups, act=False)
59
  self.act = act if isinstance(act, nn.Module) else nn.Identity()
 
75
  weights = conv.weight * t
76
 
77
  bn = nn.Identity()
78
+ conv = nn.Conv2d(
79
+ in_channels=conv.in_channels,
80
+ out_channels=conv.out_channels,
81
+ kernel_size=conv.kernel_size,
82
+ stride=conv.stride,
83
+ padding=conv.padding,
84
+ dilation=conv.dilation,
85
+ groups=conv.groups,
86
+ bias=True,
87
+ padding_mode=conv.padding_mode,
88
+ )
89
 
90
  conv.weight = torch.nn.Parameter(weights)
91
  conv.bias = torch.nn.Parameter(bias)
model/yolo.py CHANGED
@@ -4,6 +4,7 @@ import torch
4
  import torch.nn as nn
5
  from loguru import logger
6
  from omegaconf import OmegaConf
 
7
  from tools.layer_helper import get_layer_map
8
 
9
 
 
4
  import torch.nn as nn
5
  from loguru import logger
6
  from omegaconf import OmegaConf
7
+
8
  from tools.layer_helper import get_layer_map
9
 
10
 
tests/test_model/test_yolo.py CHANGED
@@ -1,11 +1,11 @@
 
 
1
  import pytest
2
  import torch
3
- from hydra import initialize, compose
4
  from hydra.core.global_hydra import GlobalHydra
5
  from omegaconf import DictConfig, OmegaConf
6
 
7
- import sys
8
-
9
  sys.path.append("./")
10
  from model.yolo import YOLO, get_model
11
 
 
1
+ import sys
2
+
3
  import pytest
4
  import torch
5
+ from hydra import compose, initialize
6
  from hydra.core.global_hydra import GlobalHydra
7
  from omegaconf import DictConfig, OmegaConf
8
 
 
 
9
  sys.path.append("./")
10
  from model.yolo import YOLO, get_model
11
 
tests/test_utils/test_dataaugment.py CHANGED
@@ -1,11 +1,12 @@
 
 
1
  import pytest
2
  import torch
3
  from PIL import Image
4
  from torchvision.transforms import functional as TF
5
- import sys
6
 
7
  sys.path.append("./")
8
- from utils.dataargument import RandomHorizontalFlip, Compose, Mosaic
9
 
10
 
11
  def test_random_horizontal_flip():
 
1
+ import sys
2
+
3
  import pytest
4
  import torch
5
  from PIL import Image
6
  from torchvision.transforms import functional as TF
 
7
 
8
  sys.path.append("./")
9
+ from utils.dataargument import Compose, Mosaic, RandomHorizontalFlip
10
 
11
 
12
  def test_random_horizontal_flip():
tools/layer_helper.py CHANGED
@@ -1,5 +1,7 @@
1
  import inspect
 
2
  import torch.nn as nn
 
3
  from model import module
4
 
5
 
 
1
  import inspect
2
+
3
  import torch.nn as nn
4
+
5
  from model import module
6
 
7
 
tools/log_helper.py CHANGED
@@ -12,6 +12,7 @@ Example:
12
  """
13
 
14
  import sys
 
15
  from loguru import logger
16
 
17
 
 
12
  """
13
 
14
  import sys
15
+
16
  from loguru import logger
17
 
18
 
train.py CHANGED
@@ -1,9 +1,10 @@
 
1
  from loguru import logger
 
 
2
  from model.yolo import get_model
3
  from tools.log_helper import custom_logger
4
  from utils.get_dataset import prepare_dataset
5
- import hydra
6
- from config.config import Config
7
 
8
 
9
  @hydra.main(config_path="config", config_name="config", version_base=None)
 
1
+ import hydra
2
  from loguru import logger
3
+
4
+ from config.config import Config
5
  from model.yolo import get_model
6
  from tools.log_helper import custom_logger
7
  from utils.get_dataset import prepare_dataset
 
 
8
 
9
 
10
  @hydra.main(config_path="config", config_name="config", version_base=None)
utils/dataargument.py CHANGED
@@ -1,6 +1,6 @@
1
- from PIL import Image
2
  import numpy as np
3
  import torch
 
4
  from torchvision.transforms import functional as TF
5
 
6
 
 
 
1
  import numpy as np
2
  import torch
3
+ from PIL import Image
4
  from torchvision.transforms import functional as TF
5
 
6
 
utils/dataloader.py CHANGED
@@ -1,16 +1,16 @@
1
- from PIL import Image
2
- from os import path, listdir
3
 
 
4
  import hydra
5
  import numpy as np
6
  import torch
7
- from torch.utils.data import Dataset
 
8
  from loguru import logger
 
 
9
  from tqdm.rich import tqdm
10
- import diskcache as dc
11
- from typing import Union
12
- from drawer import draw_bboxes
13
- from dataargument import Compose, RandomHorizontalFlip, Mosaic
14
 
15
 
16
  class YoloDataset(Dataset):
 
1
+ from os import listdir, path
2
+ from typing import Union
3
 
4
+ import diskcache as dc
5
  import hydra
6
  import numpy as np
7
  import torch
8
+ from dataargument import Compose, Mosaic, RandomHorizontalFlip
9
+ from drawer import draw_bboxes
10
  from loguru import logger
11
+ from PIL import Image
12
+ from torch.utils.data import Dataset
13
  from tqdm.rich import tqdm
 
 
 
 
14
 
15
 
16
  class YoloDataset(Dataset):
utils/get_dataset.py CHANGED
@@ -2,8 +2,8 @@ import os
2
  import zipfile
3
 
4
  import hydra
5
- from loguru import logger
6
  import requests
 
7
  from tqdm.rich import tqdm
8
 
9
 
 
2
  import zipfile
3
 
4
  import hydra
 
5
  import requests
6
+ from loguru import logger
7
  from tqdm.rich import tqdm
8
 
9