✨ [Add] an example ipynb! demo how to inference
Browse files- .gitignore +1 -1
- demo/images/output/visualize.png +0 -0
- examples/notebook_inference.ipynb +85 -2
.gitignore
CHANGED
@@ -145,4 +145,4 @@ runs
|
|
145 |
node_modules/
|
146 |
|
147 |
# Not ignore image for demo
|
148 |
-
!demo/images
|
|
|
145 |
node_modules/
|
146 |
|
147 |
# Not ignore image for demo
|
148 |
+
!demo/images/*/*.png
|
demo/images/output/visualize.png
ADDED
![]() |
examples/notebook_inference.ipynb
CHANGED
@@ -5,7 +5,76 @@
|
|
5 |
"execution_count": null,
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
-
"source": [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
},
|
10 |
{
|
11 |
"cell_type": "code",
|
@@ -16,8 +85,22 @@
|
|
16 |
}
|
17 |
],
|
18 |
"metadata": {
|
|
|
|
|
|
|
|
|
|
|
19 |
"language_info": {
|
20 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
}
|
22 |
},
|
23 |
"nbformat": 4,
|
|
|
5 |
"execution_count": null,
|
6 |
"metadata": {},
|
7 |
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import torch\n",
|
10 |
+
"from hydra import compose, initialize\n",
|
11 |
+
"from PIL import Image \n",
|
12 |
+
"\n",
|
13 |
+
"from yolo import AugmentationComposer, bbox_nms, Config, create_model, custom_logger, draw_bboxes"
|
14 |
+
]
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"cell_type": "code",
|
18 |
+
"execution_count": null,
|
19 |
+
"metadata": {},
|
20 |
+
"outputs": [],
|
21 |
+
"source": [
|
22 |
+
"CONFIG_PATH = \"../yolo/config\"\n",
|
23 |
+
"CONFIG_NAME = \"config\"\n",
|
24 |
+
"\n",
|
25 |
+
"DEVICE = 'cuda:0'\n",
|
26 |
+
"# If weight not exist there, it will try to download it\n",
|
27 |
+
"\n",
|
28 |
+
"WEIGHT_PATH = '../weights/v9-cnw.pt' \n",
|
29 |
+
"IMAGE_PATH = '../demo/images/inference/image.png'\n",
|
30 |
+
"\n",
|
31 |
+
"custom_logger()\n",
|
32 |
+
"device = torch.device(DEVICE)\n",
|
33 |
+
"image = Image.open(IMAGE_PATH)"
|
34 |
+
]
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"cell_type": "code",
|
38 |
+
"execution_count": null,
|
39 |
+
"metadata": {},
|
40 |
+
"outputs": [],
|
41 |
+
"source": [
|
42 |
+
"with initialize(config_path=CONFIG_PATH, version_base=None, job_name=\"notebook_job\"):\n",
|
43 |
+
" cfg: Config = compose(config_name=CONFIG_NAME, overrides=[\"task=inference\", f\"task.data.source={IMAGE_PATH}\"])\n",
|
44 |
+
" model = create_model(cfg.model, WEIGHT_PATH).to(device)\n",
|
45 |
+
" transform = AugmentationComposer([], cfg.image_size)"
|
46 |
+
]
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"cell_type": "code",
|
50 |
+
"execution_count": null,
|
51 |
+
"metadata": {},
|
52 |
+
"outputs": [],
|
53 |
+
"source": [
|
54 |
+
"image, bbox = transform(image, torch.zeros(0, 5))\n",
|
55 |
+
"image = image.to(device)[None]"
|
56 |
+
]
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"cell_type": "code",
|
60 |
+
"execution_count": null,
|
61 |
+
"metadata": {},
|
62 |
+
"outputs": [],
|
63 |
+
"source": [
|
64 |
+
"with torch.no_grad():\n",
|
65 |
+
" predict = model(image)\n",
|
66 |
+
"predict_box = bbox_nms(predict[1][0], cfg.task.nms)\n",
|
67 |
+
"draw_bboxes(image, predict_box, save_path='../demo/images/output/', idx2label=cfg.class_list)"
|
68 |
+
]
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"cell_type": "markdown",
|
72 |
+
"metadata": {},
|
73 |
+
"source": [
|
74 |
+
"Sample Output:\n",
|
75 |
+
"\n",
|
76 |
+
""
|
77 |
+
]
|
78 |
},
|
79 |
{
|
80 |
"cell_type": "code",
|
|
|
85 |
}
|
86 |
],
|
87 |
"metadata": {
|
88 |
+
"kernelspec": {
|
89 |
+
"display_name": "yolomit",
|
90 |
+
"language": "python",
|
91 |
+
"name": "python3"
|
92 |
+
},
|
93 |
"language_info": {
|
94 |
+
"codemirror_mode": {
|
95 |
+
"name": "ipython",
|
96 |
+
"version": 3
|
97 |
+
},
|
98 |
+
"file_extension": ".py",
|
99 |
+
"mimetype": "text/x-python",
|
100 |
+
"name": "python",
|
101 |
+
"nbconvert_exporter": "python",
|
102 |
+
"pygments_lexer": "ipython3",
|
103 |
+
"version": "3.10.14"
|
104 |
}
|
105 |
},
|
106 |
"nbformat": 4,
|