✨ [New] load v9 model via yolo.py
Browse files- yolo/model/yolo.py +27 -15
yolo/model/yolo.py
CHANGED
@@ -2,8 +2,9 @@ from typing import Any, Dict, List, Union
|
|
2 |
|
3 |
import torch.nn as nn
|
4 |
from loguru import logger
|
5 |
-
from omegaconf import OmegaConf
|
6 |
|
|
|
7 |
from yolo.tools.layer_helper import get_layer_map
|
8 |
|
9 |
|
@@ -18,7 +19,7 @@ class YOLO(nn.Module):
|
|
18 |
|
19 |
def __init__(self, model_cfg: Model):
|
20 |
super(YOLO, self).__init__()
|
21 |
-
self.
|
22 |
self.layer_map = get_layer_map() # Get the map Dict[str: Module]
|
23 |
self.build_model(model_cfg.model)
|
24 |
|
@@ -26,24 +27,30 @@ class YOLO(nn.Module):
|
|
26 |
model_list = nn.ModuleList()
|
27 |
output_dim = [3]
|
28 |
layer_indices_by_tag = {}
|
|
|
29 |
logger.info(f"🚜 Building YOLO")
|
30 |
for arch_name in model_arch:
|
31 |
logger.info(f" 🏗️ Building {arch_name}")
|
32 |
-
for layer_idx, layer_spec in enumerate(model_arch[arch_name], start=
|
33 |
layer_type, layer_info = next(iter(layer_spec.items()))
|
34 |
layer_args = layer_info.get("args", {})
|
35 |
-
source = layer_info.get("source", -1)
|
36 |
-
output = layer_info.get("output", False)
|
37 |
|
|
|
|
|
38 |
if isinstance(source, str):
|
39 |
source = layer_indices_by_tag[source]
|
40 |
-
|
|
|
|
|
|
|
|
|
41 |
layer_args["in_channels"] = output_dim[source]
|
42 |
-
if "
|
43 |
-
layer_args["
|
44 |
-
layer_args["
|
45 |
|
46 |
-
|
|
|
47 |
model_list.append(layer)
|
48 |
|
49 |
if "tags" in layer_info:
|
@@ -53,13 +60,15 @@ class YOLO(nn.Module):
|
|
53 |
|
54 |
out_channels = self.get_out_channels(layer_type, layer_args, output_dim, source)
|
55 |
output_dim.append(out_channels)
|
|
|
|
|
56 |
self.model = model_list
|
57 |
|
58 |
def forward(self, x):
|
59 |
y = [x]
|
60 |
output = []
|
61 |
for layer in self.model:
|
62 |
-
if
|
63 |
model_input = [y[idx] for idx in layer.source]
|
64 |
else:
|
65 |
model_input = y[layer.source]
|
@@ -70,8 +79,10 @@ class YOLO(nn.Module):
|
|
70 |
return output
|
71 |
|
72 |
def get_out_channels(self, layer_type: str, layer_args: dict, output_dim: list, source: Union[int, list]):
|
73 |
-
if "Conv"
|
74 |
return layer_args["out_channels"]
|
|
|
|
|
75 |
if layer_type in ["Pool", "UpSample"]:
|
76 |
return output_dim[source]
|
77 |
if layer_type == "Concat":
|
@@ -79,11 +90,12 @@ class YOLO(nn.Module):
|
|
79 |
if layer_type == "IDetect":
|
80 |
return None
|
81 |
|
82 |
-
def create_layer(self, layer_type: str, source: Union[int, list],
|
83 |
if layer_type in self.layer_map:
|
84 |
layer = self.layer_map[layer_type](**kwargs)
|
85 |
-
layer
|
86 |
-
layer.output
|
|
|
87 |
return layer
|
88 |
else:
|
89 |
raise ValueError(f"Unsupported layer type: {layer_type}")
|
|
|
2 |
|
3 |
import torch.nn as nn
|
4 |
from loguru import logger
|
5 |
+
from omegaconf import ListConfig, OmegaConf
|
6 |
|
7 |
+
from yolo.config.config import Model
|
8 |
from yolo.tools.layer_helper import get_layer_map
|
9 |
|
10 |
|
|
|
19 |
|
20 |
def __init__(self, model_cfg: Model):
|
21 |
super(YOLO, self).__init__()
|
22 |
+
self.num_classes = model_cfg["num_classes"]
|
23 |
self.layer_map = get_layer_map() # Get the map Dict[str: Module]
|
24 |
self.build_model(model_cfg.model)
|
25 |
|
|
|
27 |
model_list = nn.ModuleList()
|
28 |
output_dim = [3]
|
29 |
layer_indices_by_tag = {}
|
30 |
+
layer_idx = 1
|
31 |
logger.info(f"🚜 Building YOLO")
|
32 |
for arch_name in model_arch:
|
33 |
logger.info(f" 🏗️ Building {arch_name}")
|
34 |
+
for layer_idx, layer_spec in enumerate(model_arch[arch_name], start=layer_idx):
|
35 |
layer_type, layer_info = next(iter(layer_spec.items()))
|
36 |
layer_args = layer_info.get("args", {})
|
|
|
|
|
37 |
|
38 |
+
# Get input source
|
39 |
+
source = layer_info.get("source", -1)
|
40 |
if isinstance(source, str):
|
41 |
source = layer_indices_by_tag[source]
|
42 |
+
elif isinstance(source, ListConfig):
|
43 |
+
source = [layer_indices_by_tag[idx] if isinstance(idx, str) else idx for idx in source]
|
44 |
+
|
45 |
+
# Find in channels
|
46 |
+
if any(module in layer_type for module in ["Conv", "ELAN", "ADown", "CBLinear"]):
|
47 |
layer_args["in_channels"] = output_dim[source]
|
48 |
+
if "Detection" in layer_type:
|
49 |
+
layer_args["in_channels"] = [output_dim[idx] for idx in source]
|
50 |
+
layer_args["num_classes"] = self.num_classes
|
51 |
|
52 |
+
# create layers
|
53 |
+
layer = self.create_layer(layer_type, source, layer_info, **layer_args)
|
54 |
model_list.append(layer)
|
55 |
|
56 |
if "tags" in layer_info:
|
|
|
60 |
|
61 |
out_channels = self.get_out_channels(layer_type, layer_args, output_dim, source)
|
62 |
output_dim.append(out_channels)
|
63 |
+
layer_idx += 1
|
64 |
+
|
65 |
self.model = model_list
|
66 |
|
67 |
def forward(self, x):
|
68 |
y = [x]
|
69 |
output = []
|
70 |
for layer in self.model:
|
71 |
+
if isinstance(layer.source, list):
|
72 |
model_input = [y[idx] for idx in layer.source]
|
73 |
else:
|
74 |
model_input = y[layer.source]
|
|
|
79 |
return output
|
80 |
|
81 |
def get_out_channels(self, layer_type: str, layer_args: dict, output_dim: list, source: Union[int, list]):
|
82 |
+
if any(module in layer_type for module in ["Conv", "ELAN", "ADown"]):
|
83 |
return layer_args["out_channels"]
|
84 |
+
if layer_type == "CBFuse":
|
85 |
+
return output_dim[source[-1]]
|
86 |
if layer_type in ["Pool", "UpSample"]:
|
87 |
return output_dim[source]
|
88 |
if layer_type == "Concat":
|
|
|
90 |
if layer_type == "IDetect":
|
91 |
return None
|
92 |
|
93 |
+
def create_layer(self, layer_type: str, source: Union[int, list], layer_info, **kwargs):
|
94 |
if layer_type in self.layer_map:
|
95 |
layer = self.layer_map[layer_type](**kwargs)
|
96 |
+
setattr(layer, "source", source)
|
97 |
+
setattr(layer, "output", layer_info.get("output", False))
|
98 |
+
setattr(layer, "tags", layer_info.get("tags", None))
|
99 |
return layer
|
100 |
else:
|
101 |
raise ValueError(f"Unsupported layer type: {layer_type}")
|