π [Merge] branch 'INFERENCE' of github.com:WongKinYiu/yolov9mit into INFERENCE
Browse files- yolo/config/config.py +1 -0
- yolo/config/task/inference.yaml +1 -0
- yolo/tools/drawer.py +0 -4
- yolo/tools/solver.py +19 -1
yolo/config/config.py
CHANGED
@@ -107,6 +107,7 @@ class InferenceConfig:
|
|
107 |
nms: NMSConfig
|
108 |
data: DataConfig
|
109 |
fast_inference: Optional[None]
|
|
|
110 |
|
111 |
|
112 |
@dataclass
|
|
|
107 |
nms: NMSConfig
|
108 |
data: DataConfig
|
109 |
fast_inference: Optional[None]
|
110 |
+
save_predict: bool
|
111 |
|
112 |
|
113 |
@dataclass
|
yolo/config/task/inference.yaml
CHANGED
@@ -8,3 +8,4 @@ data:
|
|
8 |
nms:
|
9 |
min_confidence: 0.5
|
10 |
min_iou: 0.5
|
|
|
|
8 |
nms:
|
9 |
min_confidence: 0.5
|
10 |
min_iou: 0.5
|
11 |
+
save_predict: true
|
yolo/tools/drawer.py
CHANGED
@@ -60,10 +60,6 @@ def draw_bboxes(
|
|
60 |
draw.rounded_rectangle(text_background, fill=(*color_map, 175), radius=2)
|
61 |
draw.text((x_min, y_min), label_text, fill="white", font=font)
|
62 |
|
63 |
-
os.makedirs(save_path, exist_ok=True)
|
64 |
-
save_image_path = os.path.join(save_path, save_name)
|
65 |
-
img.save(save_image_path) # Save the image with annotations
|
66 |
-
logger.info(f"πΎ Saved visualize image at {save_image_path}")
|
67 |
return img
|
68 |
|
69 |
|
|
|
60 |
draw.rounded_rectangle(text_background, fill=(*color_map, 175), radius=2)
|
61 |
draw.text((x_min, y_min), label_text, fill="white", font=font)
|
62 |
|
|
|
|
|
|
|
|
|
63 |
return img
|
64 |
|
65 |
|
yolo/tools/solver.py
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
import torch
|
2 |
from loguru import logger
|
3 |
from torch import Tensor
|
@@ -106,13 +108,17 @@ class ModelTester:
|
|
106 |
self.progress = ProgressTracker(cfg, save_path, cfg.use_wandb)
|
107 |
|
108 |
self.nms = cfg.task.nms
|
|
|
109 |
self.idx2label = cfg.class_list
|
110 |
-
self.save_path = save_path
|
111 |
|
112 |
def solve(self, dataloader: StreamDataLoader):
|
113 |
logger.info("π Start Inference!")
|
114 |
if isinstance(self.model, torch.nn.Module):
|
115 |
self.model.eval()
|
|
|
|
|
|
|
|
|
116 |
try:
|
117 |
for idx, images in enumerate(dataloader):
|
118 |
images = images.to(self.device)
|
@@ -127,6 +133,18 @@ class ModelTester:
|
|
127 |
save_name=f"frame{idx:03d}.png",
|
128 |
idx2label=self.idx2label,
|
129 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
except (KeyboardInterrupt, Exception) as e:
|
131 |
dataloader.stop_event.set()
|
132 |
dataloader.stop()
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
import torch
|
4 |
from loguru import logger
|
5 |
from torch import Tensor
|
|
|
108 |
self.progress = ProgressTracker(cfg, save_path, cfg.use_wandb)
|
109 |
|
110 |
self.nms = cfg.task.nms
|
111 |
+
self.save_path = save_path if getattr(cfg.task, "save_predict", True) else None
|
112 |
self.idx2label = cfg.class_list
|
|
|
113 |
|
114 |
def solve(self, dataloader: StreamDataLoader):
|
115 |
logger.info("π Start Inference!")
|
116 |
if isinstance(self.model, torch.nn.Module):
|
117 |
self.model.eval()
|
118 |
+
|
119 |
+
if dataloader.is_stream:
|
120 |
+
import cv2
|
121 |
+
import numpy as np
|
122 |
try:
|
123 |
for idx, images in enumerate(dataloader):
|
124 |
images = images.to(self.device)
|
|
|
133 |
save_name=f"frame{idx:03d}.png",
|
134 |
idx2label=self.idx2label,
|
135 |
)
|
136 |
+
logger.info(f"img size: {img.shape}")
|
137 |
+
if self.save_path is not None:
|
138 |
+
save_image_path = os.path.join(self.save_path, f"frame{idx:03d}.png")
|
139 |
+
img.save(save_image_path)
|
140 |
+
logger.info(f"πΎ Saved visualize image at {save_image_path}")
|
141 |
+
|
142 |
+
if dataloader.is_stream:
|
143 |
+
img = np.array(img)
|
144 |
+
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
145 |
+
cv2.imshow("Result", img)
|
146 |
+
if cv2.waitKey(1) & 0xFF == ord("q"):
|
147 |
+
break
|
148 |
except (KeyboardInterrupt, Exception) as e:
|
149 |
dataloader.stop_event.set()
|
150 |
dataloader.stop()
|