π [Add] torch auto mixed precision
Browse files- yolo/tools/trainer.py +25 -12
yolo/tools/trainer.py
CHANGED
@@ -1,8 +1,10 @@
|
|
1 |
import torch
|
2 |
from loguru import logger
|
|
|
|
|
3 |
from tqdm import tqdm
|
4 |
|
5 |
-
from yolo.config.config import TrainConfig
|
6 |
from yolo.model.yolo import YOLO
|
7 |
from yolo.tools.model_helper import EMA, get_optimizer, get_scheduler
|
8 |
from yolo.utils.loss import get_loss_function
|
@@ -22,29 +24,40 @@ class Trainer:
|
|
22 |
self.ema = EMA(model, decay=train_cfg.ema.decay)
|
23 |
else:
|
24 |
self.ema = None
|
|
|
25 |
|
26 |
-
def train_one_batch(self, data, targets):
|
27 |
data, targets = data.to(self.device), targets.to(self.device)
|
28 |
self.optimizer.zero_grad()
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
if self.ema:
|
34 |
self.ema.update()
|
|
|
35 |
return loss.item()
|
36 |
|
37 |
def train_one_epoch(self, dataloader):
|
38 |
self.model.train()
|
39 |
total_loss = 0
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
self.scheduler
|
|
|
45 |
return total_loss / len(dataloader)
|
46 |
|
47 |
-
def save_checkpoint(self, epoch, filename="checkpoint.pt"):
|
48 |
checkpoint = {
|
49 |
"epoch": epoch,
|
50 |
"model_state_dict": self.model.state_dict(),
|
|
|
1 |
import torch
|
2 |
from loguru import logger
|
3 |
+
from torch import Tensor
|
4 |
+
from torch.cuda.amp import GradScaler, autocast
|
5 |
from tqdm import tqdm
|
6 |
|
7 |
+
from yolo.config.config import Config, TrainConfig
|
8 |
from yolo.model.yolo import YOLO
|
9 |
from yolo.tools.model_helper import EMA, get_optimizer, get_scheduler
|
10 |
from yolo.utils.loss import get_loss_function
|
|
|
24 |
self.ema = EMA(model, decay=train_cfg.ema.decay)
|
25 |
else:
|
26 |
self.ema = None
|
27 |
+
self.scaler = GradScaler()
|
28 |
|
29 |
+
def train_one_batch(self, data: Tensor, targets: Tensor, progress: tqdm):
|
30 |
data, targets = data.to(self.device), targets.to(self.device)
|
31 |
self.optimizer.zero_grad()
|
32 |
+
|
33 |
+
with autocast():
|
34 |
+
outputs = self.model(data)
|
35 |
+
loss, loss_item = self.loss_fn(outputs, targets)
|
36 |
+
loss_iou, loss_dfl, loss_cls = loss_item
|
37 |
+
|
38 |
+
progress.set_description(f"Loss IoU: {loss_iou:.5f}, DFL: {loss_dfl:.5f}, CLS: {loss_cls:.5f}")
|
39 |
+
|
40 |
+
self.scaler.scale(loss).backward()
|
41 |
+
self.scaler.step(self.optimizer)
|
42 |
+
self.scaler.update()
|
43 |
+
|
44 |
if self.ema:
|
45 |
self.ema.update()
|
46 |
+
|
47 |
return loss.item()
|
48 |
|
49 |
def train_one_epoch(self, dataloader):
|
50 |
self.model.train()
|
51 |
total_loss = 0
|
52 |
+
with tqdm(dataloader, desc="Training") as progress:
|
53 |
+
for data, targets in progress:
|
54 |
+
loss = self.train_one_batch(data, targets, progress)
|
55 |
+
total_loss += loss
|
56 |
+
if self.scheduler:
|
57 |
+
self.scheduler.step()
|
58 |
return total_loss / len(dataloader)
|
59 |
|
60 |
+
def save_checkpoint(self, epoch: int, filename="checkpoint.pt"):
|
61 |
checkpoint = {
|
62 |
"epoch": epoch,
|
63 |
"model_state_dict": self.model.state_dict(),
|