π [Add] Tensorlize @ dataloader
Browse files- yolo/tools/data_loader.py +15 -3
yolo/tools/data_loader.py
CHANGED
@@ -32,7 +32,19 @@ class YoloDataset(Dataset):
|
|
32 |
transforms = [eval(aug)(prob) for aug, prob in augment_cfg.items()]
|
33 |
self.transform = AugmentationComposer(transforms, self.image_size)
|
34 |
self.transform.get_more_data = self.get_more_data
|
35 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
def load_data(self, dataset_path: Path, phase_name: str):
|
38 |
"""
|
@@ -132,7 +144,7 @@ class YoloDataset(Dataset):
|
|
132 |
return torch.zeros((0, 5))
|
133 |
|
134 |
def get_data(self, idx):
|
135 |
-
img_path, bboxes = self.
|
136 |
img = Image.open(img_path).convert("RGB")
|
137 |
return img, bboxes, img_path
|
138 |
|
@@ -146,7 +158,7 @@ class YoloDataset(Dataset):
|
|
146 |
return img, bboxes, rev_tensor, img_path
|
147 |
|
148 |
def __len__(self) -> int:
|
149 |
-
return len(self.
|
150 |
|
151 |
|
152 |
class YoloDataLoader(DataLoader):
|
|
|
32 |
transforms = [eval(aug)(prob) for aug, prob in augment_cfg.items()]
|
33 |
self.transform = AugmentationComposer(transforms, self.image_size)
|
34 |
self.transform.get_more_data = self.get_more_data
|
35 |
+
self.img_paths, self.bboxes = self.tensorlize(self.load_data(Path(dataset_cfg.path), phase_name))
|
36 |
+
|
37 |
+
def tensorlize(self, data):
|
38 |
+
img_paths, bboxes = zip(*data)
|
39 |
+
max_box = max(bbox.size(0) for bbox in bboxes)
|
40 |
+
padded_bbox_list = []
|
41 |
+
for bbox in bboxes:
|
42 |
+
padding = torch.full((max_box, 5), -1, dtype=torch.float32)
|
43 |
+
padding[: bbox.size(0)] = bbox
|
44 |
+
padded_bbox_list.append(padding)
|
45 |
+
bboxes = torch.stack(padded_bbox_list)
|
46 |
+
img_paths = np.array(img_paths)
|
47 |
+
return img_paths, bboxes
|
48 |
|
49 |
def load_data(self, dataset_path: Path, phase_name: str):
|
50 |
"""
|
|
|
144 |
return torch.zeros((0, 5))
|
145 |
|
146 |
def get_data(self, idx):
|
147 |
+
img_path, bboxes = self.img_paths[idx], self.bboxes[idx]
|
148 |
img = Image.open(img_path).convert("RGB")
|
149 |
return img, bboxes, img_path
|
150 |
|
|
|
158 |
return img, bboxes, rev_tensor, img_path
|
159 |
|
160 |
def __len__(self) -> int:
|
161 |
+
return len(self.bboxes)
|
162 |
|
163 |
|
164 |
class YoloDataLoader(DataLoader):
|