✅ [Fix] expired test of data_augmentation
Browse files
examples/example_inference.py
CHANGED
@@ -28,7 +28,7 @@ def main(cfg: Config):
|
|
28 |
model = get_model(cfg).to(device)
|
29 |
|
30 |
tester = ModelTester(cfg, model, save_path, device)
|
31 |
-
tester.solve(dataloader
|
32 |
|
33 |
|
34 |
if __name__ == "__main__":
|
|
|
28 |
model = get_model(cfg).to(device)
|
29 |
|
30 |
tester = ModelTester(cfg, model, save_path, device)
|
31 |
+
tester.solve(dataloader)
|
32 |
|
33 |
|
34 |
if __name__ == "__main__":
|
tests/test_model/test_yolo.py
CHANGED
@@ -19,6 +19,7 @@ def test_build_model():
|
|
19 |
cfg = compose(config_name=config_name)
|
20 |
|
21 |
OmegaConf.set_struct(cfg.model, False)
|
|
|
22 |
model = YOLO(cfg.model, 80)
|
23 |
assert len(model.model) == 38
|
24 |
|
@@ -26,6 +27,7 @@ def test_build_model():
|
|
26 |
def test_get_model():
|
27 |
with initialize(config_path=config_path, version_base=None):
|
28 |
cfg = compose(config_name=config_name)
|
|
|
29 |
model = get_model(cfg)
|
30 |
assert isinstance(model, YOLO)
|
31 |
|
|
|
19 |
cfg = compose(config_name=config_name)
|
20 |
|
21 |
OmegaConf.set_struct(cfg.model, False)
|
22 |
+
cfg.weight = None
|
23 |
model = YOLO(cfg.model, 80)
|
24 |
assert len(model.model) == 38
|
25 |
|
|
|
27 |
def test_get_model():
|
28 |
with initialize(config_path=config_path, version_base=None):
|
29 |
cfg = compose(config_name=config_name)
|
30 |
+
cfg.weight = None
|
31 |
model = get_model(cfg)
|
32 |
assert isinstance(model, YOLO)
|
33 |
|
tests/test_utils/test_dataaugment.py
CHANGED
@@ -39,7 +39,7 @@ def test_compose():
|
|
39 |
return image, boxes
|
40 |
|
41 |
compose = AugmentationComposer([mock_transform, mock_transform])
|
42 |
-
img = Image.new("RGB", (
|
43 |
boxes = torch.tensor([[0, 0.2, 0.2, 0.8, 0.8]])
|
44 |
|
45 |
transformed_img, transformed_boxes = compose(img, boxes)
|
|
|
39 |
return image, boxes
|
40 |
|
41 |
compose = AugmentationComposer([mock_transform, mock_transform])
|
42 |
+
img = Image.new("RGB", (640, 640), color="blue")
|
43 |
boxes = torch.tensor([[0, 0.2, 0.2, 0.8, 0.8]])
|
44 |
|
45 |
transformed_img, transformed_boxes = compose(img, boxes)
|