henry000 commited on
Commit
7f8ebc5
Β·
1 Parent(s): 010502a

πŸ› [Fix] #32 bugs, turn 8400->auto anchor size

Browse files
yolo/utils/bounding_box_utils.py CHANGED
@@ -166,15 +166,14 @@ class BoxMatcher:
166
  Get the (predicted class' probabilities) corresponding to the target classes across all anchors
167
 
168
  Args:
169
- predict_cls [batch x class x anchors]: The predicted probabilities for each class across each anchor.
170
  target_cls [batch x targets]: The class index for each target.
171
 
172
  Returns:
173
  [batch x targets x anchors]: The probabilities from `pred_cls` corresponding to the class indices specified in `target_cls`.
174
  """
175
- # TODO: Turn 8400 to HW
176
- target_cls = target_cls.expand(-1, -1, 8400)
177
  predict_cls = predict_cls.transpose(1, 2)
 
178
  cls_probabilities = torch.gather(predict_cls, 1, target_cls)
179
  return cls_probabilities
180
 
 
166
  Get the (predicted class' probabilities) corresponding to the target classes across all anchors
167
 
168
  Args:
169
+ predict_cls [batch x anchors x class]: The predicted probabilities for each class across each anchor.
170
  target_cls [batch x targets]: The class index for each target.
171
 
172
  Returns:
173
  [batch x targets x anchors]: The probabilities from `pred_cls` corresponding to the class indices specified in `target_cls`.
174
  """
 
 
175
  predict_cls = predict_cls.transpose(1, 2)
176
+ target_cls = target_cls.expand(-1, -1, predict_cls.size(2))
177
  cls_probabilities = torch.gather(predict_cls, 1, target_cls)
178
  return cls_probabilities
179
 
yolo/utils/model_utils.py CHANGED
@@ -69,7 +69,7 @@ def create_scheduler(optimizer: Optimizer, schedule_cfg: SchedulerConfig) -> _LR
69
  schedule = scheduler_class(optimizer, **schedule_cfg.args)
70
  if hasattr(schedule_cfg, "warmup"):
71
  wepoch = schedule_cfg.warmup.epochs
72
- lambda1 = lambda epoch: 0.1 + 0.9 * (epoch + 1 / wepoch) if epoch < wepoch else 1
73
  lambda2 = lambda epoch: 10 - 9 * (epoch / wepoch) if epoch < wepoch else 1
74
  warmup_schedule = LambdaLR(optimizer, lr_lambda=[lambda1, lambda2, lambda1])
75
  schedule = SequentialLR(optimizer, schedulers=[warmup_schedule, schedule], milestones=[2])
 
69
  schedule = scheduler_class(optimizer, **schedule_cfg.args)
70
  if hasattr(schedule_cfg, "warmup"):
71
  wepoch = schedule_cfg.warmup.epochs
72
+ lambda1 = lambda epoch: 0.1 + 0.9 * (epoch / wepoch) if epoch < wepoch else 1
73
  lambda2 = lambda epoch: 10 - 9 * (epoch / wepoch) if epoch < wepoch else 1
74
  warmup_schedule = LambdaLR(optimizer, lr_lambda=[lambda1, lambda2, lambda1])
75
  schedule = SequentialLR(optimizer, schedulers=[warmup_schedule, schedule], milestones=[2])