henry000 commited on
Commit
8228669
·
1 Parent(s): 86cd350

✏️ [Fix] typo in README doc

Browse files
Files changed (1) hide show
  1. README.md +20 -22
README.md CHANGED
@@ -2,9 +2,10 @@
2
 
3
  > [!CAUTION]
4
  > We wanted to inform you that the training code for this project is still in progress, and there are two known issues:
 
5
  > - CPU memory leak during training
6
  > - Slower convergence speed
7
- >
8
  > We strongly recommend refraining from training the model until version 1.0 is released.
9
  > However, inference and validation with pre-trained weights on COCO are available and can be used safely.
10
 
@@ -28,19 +29,24 @@
28
  Welcome to the official implementation of YOLOv7 and YOLOv9. This repository will contains the complete codebase, pre-trained models, and detailed instructions for training and deploying YOLOv9.
29
 
30
  ## TL;DR
 
31
  - This is the official YOLO model implementation with an MIT License.
32
  - For quick deployment: you can directly install by pip+git:
 
33
  ```shell
34
  pip install git+https://github.com/WongKinYiu/YOLO.git
35
  yolo task.data.source=0 # source could be a single file, video, image folder, webcam ID
36
  ```
37
 
38
  ## Introduction
 
39
  - [**YOLOv9**: Learning What You Want to Learn Using Programmable Gradient Information](https://arxiv.org/abs/2402.13616)
40
  - [**YOLOv7**: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors](https://arxiv.org/abs/2207.02696)
41
 
42
  ## Installation
 
43
  To get started using YOLOv9's developer mode, we recommand you clone this repository and install the required dependencies:
 
44
  ```shell
45
  git clone [email protected]:WongKinYiu/YOLO.git
46
  cd YOLO
@@ -52,48 +58,34 @@ pip install -r requirements.txt
52
  <table>
53
  <tr><td>
54
 
55
- | Tools | pip 🐍 | HuggingFace 🤗 | Docker 🐳 |
56
- | -------------------- | :----: | :--------------: | :-------: |
57
- | Compatibility | ✅ | ✅ | 🧪 |
58
-
59
- | Phase | Training | Validation | Inference |
60
- | ------------------- | :------: | :---------: | :-------: |
61
- | Supported | ✅ | ✅ | ✅ |
62
-
63
- </td><td>
64
-
65
- | Device | CUDA | CPU | MPS |
66
- | ------------------ | :---------: | :-------: | :-------: |
67
- | PyTorch | v1.12 | v2.3+ | v1.12 |
68
- | ONNX | ✅ | ✅ | - |
69
- | TensorRT | ✅ | - | - |
70
- | OpenVINO | - | 🧪 | ❔ |
71
-
72
- </td></tr> </table>
73
-
74
-
75
-
76
  ## Task
 
77
  These are simple examples. For more customization details, please refer to [Notebooks](examples) and lower-level modifications **[HOWTO](docs/HOWTO.md)**.
78
 
79
  ## Training
 
80
  To train YOLO on your machine/dataset:
81
 
82
  1. Modify the configuration file `yolo/config/dataset/**.yaml` to point to your dataset.
83
  2. Run the training script:
 
84
  ```shell
85
  python yolo/lazy.py task=train dataset=** use_wandb=True
86
  python yolo/lazy.py task=train task.data.batch_size=8 model=v9-c weight=False # or more args
87
  ```
88
 
89
  ### Transfer Learning
 
90
  To perform transfer learning with YOLOv9:
 
91
  ```shell
92
  python yolo/lazy.py task=train task.data.batch_size=8 model=v9-c dataset={dataset_config} device={cpu, mps, cuda}
93
  ```
94
 
95
  ### Inference
 
96
  To use a model for object detection, use:
 
97
  ```shell
98
  python yolo/lazy.py # if cloned from GitHub
99
  python yolo/lazy.py task=inference \ # default is inference
@@ -109,16 +101,20 @@ yolo task=inference task.data.source={Any}
109
  ```
110
 
111
  ### Validation
 
112
  To validate model performance, or generate a json file in COCO format:
 
113
  ```shell
114
  python yolo/lazy.py task=validation
115
  python yolo/lazy.py task=validation dataset=toy
116
  ```
117
 
118
  ## Contributing
 
119
  Contributions to the YOLO project are welcome! See [CONTRIBUTING](docs/CONTRIBUTING.md) for guidelines on how to contribute.
120
 
121
  ### TODO Diagrams
 
122
  ```mermaid
123
  flowchart TB
124
  subgraph Features
@@ -145,9 +141,11 @@ flowchart TB
145
  ```
146
 
147
  ## Star History
 
148
  [![Star History Chart](https://api.star-history.com/svg?repos=WongKinYiu/YOLO&type=Date)](https://star-history.com/#WongKinYiu/YOLO&Date)
149
 
150
  ## Citations
 
151
  ```
152
  @misc{wang2022yolov7,
153
  title={YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors},
 
2
 
3
  > [!CAUTION]
4
  > We wanted to inform you that the training code for this project is still in progress, and there are two known issues:
5
+ >
6
  > - CPU memory leak during training
7
  > - Slower convergence speed
8
+ >
9
  > We strongly recommend refraining from training the model until version 1.0 is released.
10
  > However, inference and validation with pre-trained weights on COCO are available and can be used safely.
11
 
 
29
  Welcome to the official implementation of YOLOv7 and YOLOv9. This repository will contains the complete codebase, pre-trained models, and detailed instructions for training and deploying YOLOv9.
30
 
31
  ## TL;DR
32
+
33
  - This is the official YOLO model implementation with an MIT License.
34
  - For quick deployment: you can directly install by pip+git:
35
+
36
  ```shell
37
  pip install git+https://github.com/WongKinYiu/YOLO.git
38
  yolo task.data.source=0 # source could be a single file, video, image folder, webcam ID
39
  ```
40
 
41
  ## Introduction
42
+
43
  - [**YOLOv9**: Learning What You Want to Learn Using Programmable Gradient Information](https://arxiv.org/abs/2402.13616)
44
  - [**YOLOv7**: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors](https://arxiv.org/abs/2207.02696)
45
 
46
  ## Installation
47
+
48
  To get started using YOLOv9's developer mode, we recommand you clone this repository and install the required dependencies:
49
+
50
  ```shell
51
  git clone [email protected]:WongKinYiu/YOLO.git
52
  cd YOLO
 
58
  <table>
59
  <tr><td>
60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
  ## Task
62
+
63
  These are simple examples. For more customization details, please refer to [Notebooks](examples) and lower-level modifications **[HOWTO](docs/HOWTO.md)**.
64
 
65
  ## Training
66
+
67
  To train YOLO on your machine/dataset:
68
 
69
  1. Modify the configuration file `yolo/config/dataset/**.yaml` to point to your dataset.
70
  2. Run the training script:
71
+
72
  ```shell
73
  python yolo/lazy.py task=train dataset=** use_wandb=True
74
  python yolo/lazy.py task=train task.data.batch_size=8 model=v9-c weight=False # or more args
75
  ```
76
 
77
  ### Transfer Learning
78
+
79
  To perform transfer learning with YOLOv9:
80
+
81
  ```shell
82
  python yolo/lazy.py task=train task.data.batch_size=8 model=v9-c dataset={dataset_config} device={cpu, mps, cuda}
83
  ```
84
 
85
  ### Inference
86
+
87
  To use a model for object detection, use:
88
+
89
  ```shell
90
  python yolo/lazy.py # if cloned from GitHub
91
  python yolo/lazy.py task=inference \ # default is inference
 
101
  ```
102
 
103
  ### Validation
104
+
105
  To validate model performance, or generate a json file in COCO format:
106
+
107
  ```shell
108
  python yolo/lazy.py task=validation
109
  python yolo/lazy.py task=validation dataset=toy
110
  ```
111
 
112
  ## Contributing
113
+
114
  Contributions to the YOLO project are welcome! See [CONTRIBUTING](docs/CONTRIBUTING.md) for guidelines on how to contribute.
115
 
116
  ### TODO Diagrams
117
+
118
  ```mermaid
119
  flowchart TB
120
  subgraph Features
 
141
  ```
142
 
143
  ## Star History
144
+
145
  [![Star History Chart](https://api.star-history.com/svg?repos=WongKinYiu/YOLO&type=Date)](https://star-history.com/#WongKinYiu/YOLO&Date)
146
 
147
  ## Citations
148
+
149
  ```
150
  @misc{wang2022yolov7,
151
  title={YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors},