🔨 [Finish] model construct by a yaml config file
Browse files- model/module.py +210 -48
- model/yolo.py +80 -7
model/module.py
CHANGED
@@ -1,14 +1,25 @@
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
3 |
|
4 |
-
# basic
|
5 |
|
|
|
6 |
class Conv(nn.Module):
|
7 |
# basic convlution
|
8 |
-
def __init__(
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
super().__init__()
|
13 |
|
14 |
# not yet handle the case when dilation is a tuple
|
@@ -18,7 +29,9 @@ class Conv(nn.Module):
|
|
18 |
else:
|
19 |
padding = [(dilation * (k - 1) + 1) // 2 for k in kernel_size]
|
20 |
|
21 |
-
self.conv = nn.Conv2d(
|
|
|
|
|
22 |
self.bn = nn.BatchNorm2d(out_channels)
|
23 |
self.act = act if isinstance(act, nn.Module) else nn.Identity()
|
24 |
|
@@ -33,11 +46,9 @@ class Conv(nn.Module):
|
|
33 |
|
34 |
|
35 |
# RepVGG
|
36 |
-
|
37 |
class RepConv(nn.Module):
|
38 |
# https://github.com/DingXiaoH/RepVGG
|
39 |
-
def __init__(self, in_channels, out_channels, kernel_size=3,
|
40 |
-
stride=1, groups=1, act=nn.ReLU()):
|
41 |
|
42 |
super().__init__()
|
43 |
|
@@ -56,11 +67,9 @@ class RepConv(nn.Module):
|
|
56 |
|
57 |
|
58 |
# ResNet
|
59 |
-
|
60 |
class Res(nn.Module):
|
61 |
# ResNet bottleneck
|
62 |
-
def __init__(self, in_channels, out_channels,
|
63 |
-
groups=1, act=nn.ReLU(), ratio=0.25):
|
64 |
|
65 |
super().__init__()
|
66 |
|
@@ -75,8 +84,7 @@ class Res(nn.Module):
|
|
75 |
|
76 |
class RepRes(nn.Module):
|
77 |
# RepResNet bottleneck
|
78 |
-
def __init__(self, in_channels, out_channels,
|
79 |
-
groups=1, act=nn.ReLU(), ratio=0.25):
|
80 |
|
81 |
super().__init__()
|
82 |
|
@@ -91,14 +99,21 @@ class RepRes(nn.Module):
|
|
91 |
|
92 |
class ConvBlock(nn.Module):
|
93 |
# ConvBlock
|
94 |
-
def __init__(self, in_channels,
|
95 |
-
repeat=1, act=nn.ReLU(), ratio=1.0):
|
96 |
|
97 |
super().__init__()
|
98 |
|
99 |
h_channels = int(in_channels * ratio)
|
100 |
-
self.cv1 =
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
self.cv2 = nn.Identity() if repeat == 1 else Conv(h_channels, in_channels, 3, 1, act=act)
|
103 |
|
104 |
def forward(self, x):
|
@@ -107,14 +122,21 @@ class ConvBlock(nn.Module):
|
|
107 |
|
108 |
class RepConvBlock(nn.Module):
|
109 |
# ConvBlock
|
110 |
-
def __init__(self, in_channels,
|
111 |
-
repeat=1, act=nn.ReLU(), ratio=1.0):
|
112 |
|
113 |
super().__init__()
|
114 |
|
115 |
h_channels = int(in_channels * ratio)
|
116 |
-
self.cv1 =
|
117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
self.cv2 = nn.Identity() if repeat == 1 else Conv(h_channels, in_channels, 3, 1, act=act)
|
119 |
|
120 |
def forward(self, x):
|
@@ -123,14 +145,21 @@ class RepConvBlock(nn.Module):
|
|
123 |
|
124 |
class ResConvBlock(nn.Module):
|
125 |
# ResConvBlock
|
126 |
-
def __init__(self, in_channels,
|
127 |
-
repeat=1, act=nn.ReLU(), ratio=1.0):
|
128 |
|
129 |
super().__init__()
|
130 |
|
131 |
h_channels = int(in_channels * ratio)
|
132 |
-
self.cv1 =
|
133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
self.cv2 = nn.Identity() if repeat == 1 else Conv(h_channels, in_channels, 3, 1, act=act)
|
135 |
|
136 |
def forward(self, x):
|
@@ -139,14 +168,21 @@ class ResConvBlock(nn.Module):
|
|
139 |
|
140 |
class ResRepConvBlock(nn.Module):
|
141 |
# ResConvBlock
|
142 |
-
def __init__(self, in_channels,
|
143 |
-
repeat=1, act=nn.ReLU(), ratio=1.0):
|
144 |
|
145 |
super().__init__()
|
146 |
|
147 |
h_channels = int(in_channels * ratio)
|
148 |
-
self.cv1 =
|
149 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
150 |
self.cv2 = nn.Identity() if repeat == 1 else Conv(h_channels, in_channels, 3, 1, act=act)
|
151 |
|
152 |
def forward(self, x):
|
@@ -154,11 +190,9 @@ class ResRepConvBlock(nn.Module):
|
|
154 |
|
155 |
|
156 |
# Darknet
|
157 |
-
|
158 |
class Dark(nn.Module):
|
159 |
# DarkNet bottleneck
|
160 |
-
def __init__(self, in_channels, out_channels,
|
161 |
-
groups=1, act=nn.ReLU(), ratio=0.5):
|
162 |
|
163 |
super().__init__()
|
164 |
|
@@ -172,8 +206,7 @@ class Dark(nn.Module):
|
|
172 |
|
173 |
class RepDark(nn.Module):
|
174 |
# RepDarkNet bottleneck
|
175 |
-
def __init__(self, in_channels, out_channels,
|
176 |
-
groups=1, act=nn.ReLU(), ratio=0.5):
|
177 |
|
178 |
super().__init__()
|
179 |
|
@@ -186,11 +219,9 @@ class RepDark(nn.Module):
|
|
186 |
|
187 |
|
188 |
# CSPNet
|
189 |
-
|
190 |
class CSP(nn.Module):
|
191 |
# CSPNet
|
192 |
-
def __init__(self, in_channels, out_channels,
|
193 |
-
repeat=1, cb_repeat=2, act=nn.ReLU(), ratio=1.0):
|
194 |
|
195 |
super().__init__()
|
196 |
|
@@ -208,14 +239,15 @@ class CSP(nn.Module):
|
|
208 |
|
209 |
class CSPDark(nn.Module):
|
210 |
# CSPNet
|
211 |
-
def __init__(self, in_channels, out_channels,
|
212 |
-
repeat=1, groups=1, act=nn.ReLU(), ratio=1.0):
|
213 |
|
214 |
super().__init__()
|
215 |
|
216 |
h_channels = in_channels // 2
|
217 |
self.cv1 = Conv(in_channels, in_channels, 1, 1, act=act)
|
218 |
-
self.cb = nn.Sequential(
|
|
|
|
|
219 |
self.cv2 = Conv(2 * h_channels, out_channels, 1, 1, act=act)
|
220 |
|
221 |
def forward(self, x):
|
@@ -226,18 +258,16 @@ class CSPDark(nn.Module):
|
|
226 |
|
227 |
|
228 |
# ELAN
|
229 |
-
|
230 |
class ELAN(nn.Module):
|
231 |
# ELAN
|
232 |
-
def __init__(self, in_channels, out_channels, med_channels,
|
233 |
-
elan_repeat=2, cb_repeat=2, ratio=1.0):
|
234 |
|
235 |
super().__init__()
|
236 |
|
237 |
h_channels = med_channels // 2
|
238 |
self.cv1 = Conv(in_channels, med_channels, 1, 1)
|
239 |
self.cb = nn.ModuleList(ConvBlock(h_channels, repeat=cb_repeat, ratio=ratio) for _ in range(elan_repeat))
|
240 |
-
self.cv2 = Conv((2+elan_repeat) * h_channels, out_channels, 1, 1)
|
241 |
|
242 |
def forward(self, x):
|
243 |
|
@@ -249,15 +279,14 @@ class ELAN(nn.Module):
|
|
249 |
|
250 |
class CSPELAN(nn.Module):
|
251 |
# ELAN
|
252 |
-
def __init__(self, in_channels, out_channels, med_channels,
|
253 |
-
elan_repeat=2, cb_repeat=2, ratio=1.0):
|
254 |
|
255 |
super().__init__()
|
256 |
|
257 |
h_channels = med_channels // 2
|
258 |
self.cv1 = Conv(in_channels, med_channels, 1, 1)
|
259 |
self.cb = nn.ModuleList(CSP(h_channels, h_channels, repeat=cb_repeat, ratio=ratio) for _ in range(elan_repeat))
|
260 |
-
self.cv2 = Conv((2+elan_repeat) * h_channels, out_channels, 1, 1)
|
261 |
|
262 |
def forward(self, x):
|
263 |
|
@@ -265,3 +294,136 @@ class CSPELAN(nn.Module):
|
|
265 |
y.extend((m(y[-1])) for m in self.cb)
|
266 |
|
267 |
return self.cv2(torch.cat(y, 1))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
import torch.nn as nn
|
3 |
|
|
|
4 |
|
5 |
+
# basic
|
6 |
class Conv(nn.Module):
|
7 |
# basic convlution
|
8 |
+
def __init__(
|
9 |
+
self,
|
10 |
+
in_channels,
|
11 |
+
out_channels,
|
12 |
+
kernel_size,
|
13 |
+
stride=1,
|
14 |
+
padding=0,
|
15 |
+
dilation=1,
|
16 |
+
groups=1,
|
17 |
+
act=nn.ReLU(),
|
18 |
+
bias=False,
|
19 |
+
auto_padding=True,
|
20 |
+
padding_mode="zeros",
|
21 |
+
):
|
22 |
+
|
23 |
super().__init__()
|
24 |
|
25 |
# not yet handle the case when dilation is a tuple
|
|
|
29 |
else:
|
30 |
padding = [(dilation * (k - 1) + 1) // 2 for k in kernel_size]
|
31 |
|
32 |
+
self.conv = nn.Conv2d(
|
33 |
+
in_channels, out_channels, kernel_size, stride, padding, groups=groups, dilation=dilation, bias=bias
|
34 |
+
)
|
35 |
self.bn = nn.BatchNorm2d(out_channels)
|
36 |
self.act = act if isinstance(act, nn.Module) else nn.Identity()
|
37 |
|
|
|
46 |
|
47 |
|
48 |
# RepVGG
|
|
|
49 |
class RepConv(nn.Module):
|
50 |
# https://github.com/DingXiaoH/RepVGG
|
51 |
+
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, groups=1, act=nn.ReLU()):
|
|
|
52 |
|
53 |
super().__init__()
|
54 |
|
|
|
67 |
|
68 |
|
69 |
# ResNet
|
|
|
70 |
class Res(nn.Module):
|
71 |
# ResNet bottleneck
|
72 |
+
def __init__(self, in_channels, out_channels, groups=1, act=nn.ReLU(), ratio=0.25):
|
|
|
73 |
|
74 |
super().__init__()
|
75 |
|
|
|
84 |
|
85 |
class RepRes(nn.Module):
|
86 |
# RepResNet bottleneck
|
87 |
+
def __init__(self, in_channels, out_channels, groups=1, act=nn.ReLU(), ratio=0.25):
|
|
|
88 |
|
89 |
super().__init__()
|
90 |
|
|
|
99 |
|
100 |
class ConvBlock(nn.Module):
|
101 |
# ConvBlock
|
102 |
+
def __init__(self, in_channels, repeat=1, act=nn.ReLU(), ratio=1.0):
|
|
|
103 |
|
104 |
super().__init__()
|
105 |
|
106 |
h_channels = int(in_channels * ratio)
|
107 |
+
self.cv1 = (
|
108 |
+
Conv(in_channels, in_channels, 3, 1, act=act)
|
109 |
+
if repeat == 1
|
110 |
+
else Conv(in_channels, h_channels, 3, 1, act=act)
|
111 |
+
)
|
112 |
+
self.cb = (
|
113 |
+
nn.Sequential(*(Conv(in_channels, in_channels, 3, 1, act=act) for _ in range(repeat - 2)))
|
114 |
+
if repeat > 2
|
115 |
+
else nn.Identity()
|
116 |
+
)
|
117 |
self.cv2 = nn.Identity() if repeat == 1 else Conv(h_channels, in_channels, 3, 1, act=act)
|
118 |
|
119 |
def forward(self, x):
|
|
|
122 |
|
123 |
class RepConvBlock(nn.Module):
|
124 |
# ConvBlock
|
125 |
+
def __init__(self, in_channels, repeat=1, act=nn.ReLU(), ratio=1.0):
|
|
|
126 |
|
127 |
super().__init__()
|
128 |
|
129 |
h_channels = int(in_channels * ratio)
|
130 |
+
self.cv1 = (
|
131 |
+
Conv(in_channels, in_channels, 3, 1, act=act)
|
132 |
+
if repeat == 1
|
133 |
+
else RepConv(in_channels, h_channels, 3, 1, act=act)
|
134 |
+
)
|
135 |
+
self.cb = (
|
136 |
+
nn.Sequential(*(RepConv(in_channels, in_channels, 3, 1, act=act) for _ in range(repeat - 2)))
|
137 |
+
if repeat > 2
|
138 |
+
else nn.Identity()
|
139 |
+
)
|
140 |
self.cv2 = nn.Identity() if repeat == 1 else Conv(h_channels, in_channels, 3, 1, act=act)
|
141 |
|
142 |
def forward(self, x):
|
|
|
145 |
|
146 |
class ResConvBlock(nn.Module):
|
147 |
# ResConvBlock
|
148 |
+
def __init__(self, in_channels, repeat=1, act=nn.ReLU(), ratio=1.0):
|
|
|
149 |
|
150 |
super().__init__()
|
151 |
|
152 |
h_channels = int(in_channels * ratio)
|
153 |
+
self.cv1 = (
|
154 |
+
Conv(in_channels, in_channels, 3, 1, act=act)
|
155 |
+
if repeat == 1
|
156 |
+
else Conv(in_channels, h_channels, 3, 1, act=act)
|
157 |
+
)
|
158 |
+
self.cb = (
|
159 |
+
nn.Sequential(*(Conv(in_channels, in_channels, 3, 1, act=act) for _ in range(repeat - 2)))
|
160 |
+
if repeat > 2
|
161 |
+
else nn.Identity()
|
162 |
+
)
|
163 |
self.cv2 = nn.Identity() if repeat == 1 else Conv(h_channels, in_channels, 3, 1, act=act)
|
164 |
|
165 |
def forward(self, x):
|
|
|
168 |
|
169 |
class ResRepConvBlock(nn.Module):
|
170 |
# ResConvBlock
|
171 |
+
def __init__(self, in_channels, repeat=1, act=nn.ReLU(), ratio=1.0):
|
|
|
172 |
|
173 |
super().__init__()
|
174 |
|
175 |
h_channels = int(in_channels * ratio)
|
176 |
+
self.cv1 = (
|
177 |
+
Conv(in_channels, in_channels, 3, 1, act=act)
|
178 |
+
if repeat == 1
|
179 |
+
else RepConv(in_channels, h_channels, 3, 1, act=act)
|
180 |
+
)
|
181 |
+
self.cb = (
|
182 |
+
nn.Sequential(*(RepConv(in_channels, in_channels, 3, 1, act=act) for _ in range(repeat - 2)))
|
183 |
+
if repeat > 2
|
184 |
+
else nn.Identity()
|
185 |
+
)
|
186 |
self.cv2 = nn.Identity() if repeat == 1 else Conv(h_channels, in_channels, 3, 1, act=act)
|
187 |
|
188 |
def forward(self, x):
|
|
|
190 |
|
191 |
|
192 |
# Darknet
|
|
|
193 |
class Dark(nn.Module):
|
194 |
# DarkNet bottleneck
|
195 |
+
def __init__(self, in_channels, out_channels, groups=1, act=nn.ReLU(), ratio=0.5):
|
|
|
196 |
|
197 |
super().__init__()
|
198 |
|
|
|
206 |
|
207 |
class RepDark(nn.Module):
|
208 |
# RepDarkNet bottleneck
|
209 |
+
def __init__(self, in_channels, out_channels, groups=1, act=nn.ReLU(), ratio=0.5):
|
|
|
210 |
|
211 |
super().__init__()
|
212 |
|
|
|
219 |
|
220 |
|
221 |
# CSPNet
|
|
|
222 |
class CSP(nn.Module):
|
223 |
# CSPNet
|
224 |
+
def __init__(self, in_channels, out_channels, repeat=1, cb_repeat=2, act=nn.ReLU(), ratio=1.0):
|
|
|
225 |
|
226 |
super().__init__()
|
227 |
|
|
|
239 |
|
240 |
class CSPDark(nn.Module):
|
241 |
# CSPNet
|
242 |
+
def __init__(self, in_channels, out_channels, repeat=1, groups=1, act=nn.ReLU(), ratio=1.0):
|
|
|
243 |
|
244 |
super().__init__()
|
245 |
|
246 |
h_channels = in_channels // 2
|
247 |
self.cv1 = Conv(in_channels, in_channels, 1, 1, act=act)
|
248 |
+
self.cb = nn.Sequential(
|
249 |
+
*(Dark(h_channels, h_channels, groups=groups, act=act, ratio=ratio) for _ in range(repeat))
|
250 |
+
)
|
251 |
self.cv2 = Conv(2 * h_channels, out_channels, 1, 1, act=act)
|
252 |
|
253 |
def forward(self, x):
|
|
|
258 |
|
259 |
|
260 |
# ELAN
|
|
|
261 |
class ELAN(nn.Module):
|
262 |
# ELAN
|
263 |
+
def __init__(self, in_channels, out_channels, med_channels, elan_repeat=2, cb_repeat=2, ratio=1.0):
|
|
|
264 |
|
265 |
super().__init__()
|
266 |
|
267 |
h_channels = med_channels // 2
|
268 |
self.cv1 = Conv(in_channels, med_channels, 1, 1)
|
269 |
self.cb = nn.ModuleList(ConvBlock(h_channels, repeat=cb_repeat, ratio=ratio) for _ in range(elan_repeat))
|
270 |
+
self.cv2 = Conv((2 + elan_repeat) * h_channels, out_channels, 1, 1)
|
271 |
|
272 |
def forward(self, x):
|
273 |
|
|
|
279 |
|
280 |
class CSPELAN(nn.Module):
|
281 |
# ELAN
|
282 |
+
def __init__(self, in_channels, out_channels, med_channels, elan_repeat=2, cb_repeat=2, ratio=1.0):
|
|
|
283 |
|
284 |
super().__init__()
|
285 |
|
286 |
h_channels = med_channels // 2
|
287 |
self.cv1 = Conv(in_channels, med_channels, 1, 1)
|
288 |
self.cb = nn.ModuleList(CSP(h_channels, h_channels, repeat=cb_repeat, ratio=ratio) for _ in range(elan_repeat))
|
289 |
+
self.cv2 = Conv((2 + elan_repeat) * h_channels, out_channels, 1, 1)
|
290 |
|
291 |
def forward(self, x):
|
292 |
|
|
|
294 |
y.extend((m(y[-1])) for m in self.cb)
|
295 |
|
296 |
return self.cv2(torch.cat(y, 1))
|
297 |
+
|
298 |
+
|
299 |
+
class Concat(nn.Module):
|
300 |
+
def __init__(self, dim=-1):
|
301 |
+
super(Concat, self).__init__()
|
302 |
+
self.dim = dim
|
303 |
+
|
304 |
+
def forward(self, x):
|
305 |
+
return torch.cat(x, self.dim)
|
306 |
+
|
307 |
+
|
308 |
+
class MaxPool(nn.Module):
|
309 |
+
def __init__(self, kernel_size: int = 2):
|
310 |
+
super().__init__()
|
311 |
+
self.pool_layer = nn.MaxPool2d(kernel_size=kernel_size, stride=kernel_size)
|
312 |
+
|
313 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
314 |
+
return self.pool_layer(x)
|
315 |
+
|
316 |
+
|
317 |
+
# TODO: check if Mit
|
318 |
+
class SPPCSPConv(nn.Module):
|
319 |
+
# CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
|
320 |
+
def __init__(self, in_channels, out_channels, n=1, shortcut=False, g=1, e=0.5, k=(5, 9, 13)):
|
321 |
+
super(SPPCSPConv, self).__init__()
|
322 |
+
c_ = int(2 * out_channels * e) # hidden channels
|
323 |
+
self.cv1 = Conv(in_channels, c_, 1, 1)
|
324 |
+
self.cv2 = Conv(in_channels, c_, 1, 1)
|
325 |
+
self.cv3 = Conv(c_, c_, 3, 1)
|
326 |
+
self.cv4 = Conv(c_, c_, 1, 1)
|
327 |
+
self.m = nn.ModuleList([nn.MaxPool2d(kernel_size=x, stride=1, padding=x // 2) for x in k])
|
328 |
+
self.cv5 = Conv(4 * c_, c_, 1, 1)
|
329 |
+
self.cv6 = Conv(c_, c_, 3, 1)
|
330 |
+
self.cv7 = Conv(2 * c_, out_channels, 1, 1)
|
331 |
+
|
332 |
+
def forward(self, x):
|
333 |
+
x1 = self.cv4(self.cv3(self.cv1(x)))
|
334 |
+
y1 = self.cv6(self.cv5(torch.cat([x1] + [m(x1) for m in self.m], 1)))
|
335 |
+
y2 = self.cv2(x)
|
336 |
+
return self.cv7(torch.cat((y1, y2), dim=1))
|
337 |
+
|
338 |
+
|
339 |
+
class ImplicitA(nn.Module):
|
340 |
+
"""
|
341 |
+
Implement YOLOR - implicit knowledge(Add), paper: https://arxiv.org/abs/2105.04206
|
342 |
+
"""
|
343 |
+
|
344 |
+
def __init__(self, channel: int, mean: float = 0.0, std: float = 0.02):
|
345 |
+
super().__init__()
|
346 |
+
self.channel = channel
|
347 |
+
self.mean = mean
|
348 |
+
self.std = std
|
349 |
+
|
350 |
+
self.implicit = nn.Parameter(torch.empty(1, channel, 1, 1))
|
351 |
+
nn.init.normal_(self.implicit, mean=mean, std=self.std)
|
352 |
+
|
353 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
354 |
+
return self.implicit + x
|
355 |
+
|
356 |
+
|
357 |
+
class ImplicitM(nn.Module):
|
358 |
+
"""
|
359 |
+
Implement YOLOR - implicit knowledge(multiply), paper: https://arxiv.org/abs/2105.04206
|
360 |
+
"""
|
361 |
+
|
362 |
+
def __init__(self, channel: int, mean: float = 1.0, std: float = 0.02):
|
363 |
+
super().__init__()
|
364 |
+
self.channel = channel
|
365 |
+
self.mean = mean
|
366 |
+
self.std = std
|
367 |
+
|
368 |
+
self.implicit = nn.Parameter(torch.empty(1, channel, 1, 1))
|
369 |
+
nn.init.normal_(self.implicit, mean=self.mean, std=self.std)
|
370 |
+
|
371 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
372 |
+
return self.implicit * x
|
373 |
+
|
374 |
+
|
375 |
+
class UpSample(nn.Module):
|
376 |
+
def __init__(self, **kwargs):
|
377 |
+
super().__init__()
|
378 |
+
self.UpSample = nn.Upsample(**kwargs)
|
379 |
+
|
380 |
+
def forward(self, x):
|
381 |
+
return self.UpSample(x)
|
382 |
+
|
383 |
+
|
384 |
+
class IDetect(nn.Module):
|
385 |
+
"""
|
386 |
+
#TODO: Add Detect class, change IDetect base class
|
387 |
+
"""
|
388 |
+
|
389 |
+
stride = None # strides computed during build
|
390 |
+
export = False # onnx export
|
391 |
+
end2end = False
|
392 |
+
include_nms = False
|
393 |
+
concat = False
|
394 |
+
|
395 |
+
def __init__(self, nc=80, anchors=(), ch=()): # detection layer
|
396 |
+
super(IDetect, self).__init__()
|
397 |
+
self.nc = nc # number of classes
|
398 |
+
self.no = nc + 5 # number of outputs per anchor
|
399 |
+
self.nl = len(anchors) # number of detection layers
|
400 |
+
self.na = len(anchors[0]) // 2 # number of anchors
|
401 |
+
self.grid = [torch.zeros(1)] * self.nl # init grid
|
402 |
+
a = torch.tensor(anchors).float().view(self.nl, -1, 2)
|
403 |
+
self.register_buffer("anchors", a) # shape(nl,na,2)
|
404 |
+
self.register_buffer("anchor_grid", a.clone().view(self.nl, 1, -1, 1, 1, 2)) # shape(nl,1,na,1,1,2)
|
405 |
+
self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch) # output conv
|
406 |
+
|
407 |
+
self.ia = nn.ModuleList(ImplicitA(x) for x in ch)
|
408 |
+
self.im = nn.ModuleList(ImplicitM(self.no * self.na) for _ in ch)
|
409 |
+
|
410 |
+
def forward(self, x):
|
411 |
+
# x = x.copy() # for profiling
|
412 |
+
z = [] # inference output
|
413 |
+
self.training |= self.export
|
414 |
+
for i in range(self.nl):
|
415 |
+
x[i] = self.m[i](self.ia[i](x[i])) # conv
|
416 |
+
x[i] = self.im[i](x[i])
|
417 |
+
bs, _, ny, nx = x[i].shape # x(bs,255,20,20) to x(bs,3,20,20,85)
|
418 |
+
x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
|
419 |
+
|
420 |
+
if not self.training: # inference
|
421 |
+
if self.grid[i].shape[2:4] != x[i].shape[2:4]:
|
422 |
+
self.grid[i] = self._make_grid(nx, ny).to(x[i].device)
|
423 |
+
|
424 |
+
y = x[i].sigmoid()
|
425 |
+
y[..., 0:2] = (y[..., 0:2] * 2.0 - 0.5 + self.grid[i]) * self.stride[i] # xy
|
426 |
+
y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] # wh
|
427 |
+
z.append(y.view(bs, -1, self.no))
|
428 |
+
|
429 |
+
return x if self.training else (torch.cat(z, 1), x)
|
model/yolo.py
CHANGED
@@ -1,14 +1,29 @@
|
|
1 |
import torch.nn as nn
|
2 |
from loguru import logger
|
3 |
-
from typing import Dict, Any
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
|
6 |
class YOLO(nn.Module):
|
7 |
"""
|
8 |
A preliminary YOLO (You Only Look Once) model class still under development.
|
9 |
-
|
10 |
-
This class is intended to define a YOLO model for object detection tasks. It is
|
11 |
-
currently not implemented and serves as a placeholder for future development.
|
12 |
|
13 |
Parameters:
|
14 |
model_cfg: Configuration for the YOLO model. Expected to define the layers,
|
@@ -17,9 +32,61 @@ class YOLO(nn.Module):
|
|
17 |
|
18 |
def __init__(self, model_cfg: Dict[str, Any]):
|
19 |
super(YOLO, self).__init__()
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
|
25 |
def get_model(model_cfg: dict) -> YOLO:
|
@@ -33,3 +100,9 @@ def get_model(model_cfg: dict) -> YOLO:
|
|
33 |
"""
|
34 |
model = YOLO(model_cfg)
|
35 |
return model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch.nn as nn
|
2 |
from loguru import logger
|
3 |
+
from typing import Dict, Any, List
|
4 |
+
import inspect
|
5 |
+
from utils.tools import load_model_cfg
|
6 |
+
|
7 |
+
from model import module
|
8 |
+
|
9 |
+
|
10 |
+
def get_layer_map():
|
11 |
+
"""
|
12 |
+
Dynamically generates a dictionary mapping class names to classes,
|
13 |
+
filtering to include only those that are subclasses of nn.Module,
|
14 |
+
ensuring they are relevant neural network layers.
|
15 |
+
"""
|
16 |
+
layer_map = {}
|
17 |
+
for name, obj in inspect.getmembers(module, inspect.isclass):
|
18 |
+
if issubclass(obj, nn.Module) and obj is not nn.Module:
|
19 |
+
layer_map[name] = obj
|
20 |
+
return layer_map
|
21 |
|
22 |
|
23 |
class YOLO(nn.Module):
|
24 |
"""
|
25 |
A preliminary YOLO (You Only Look Once) model class still under development.
|
26 |
+
#TODO: Next: Finish forward proccess
|
|
|
|
|
27 |
|
28 |
Parameters:
|
29 |
model_cfg: Configuration for the YOLO model. Expected to define the layers,
|
|
|
32 |
|
33 |
def __init__(self, model_cfg: Dict[str, Any]):
|
34 |
super(YOLO, self).__init__()
|
35 |
+
self.nc = model_cfg["nc"]
|
36 |
+
self.layer_map = get_layer_map() # Dynamically get the mapping
|
37 |
+
self.build_model(model_cfg["model"])
|
38 |
+
print(self.model)
|
39 |
+
# raise NotImplementedError("Constructor not implemented.")
|
40 |
+
|
41 |
+
def build_model(self, model_arch: Dict[str, List[Dict[str, Dict[str, Dict]]]]):
|
42 |
+
model_list = nn.ModuleList()
|
43 |
+
output_dim = [3]
|
44 |
+
layer_indices_by_tag = {}
|
45 |
+
|
46 |
+
for arch_name, arch in model_arch.items():
|
47 |
+
logger.info(f"Building model-{arch_name}")
|
48 |
+
for layer_idx, layer_spec in enumerate(arch, start=1):
|
49 |
+
layer_type, layer_info = next(iter(layer_spec.items()))
|
50 |
+
layer_args = layer_info.get("args", {})
|
51 |
+
source = layer_info.get("source", -1)
|
52 |
+
|
53 |
+
if isinstance(source, str):
|
54 |
+
source = layer_indices_by_tag[source]
|
55 |
+
if "Conv" in layer_type:
|
56 |
+
layer_args["in_channels"] = output_dim[source]
|
57 |
+
if "Detect" in layer_type:
|
58 |
+
layer_args["nc"] = self.nc
|
59 |
+
|
60 |
+
layer = self.create_layer(layer_type, **layer_args)
|
61 |
+
model_list.append(layer)
|
62 |
+
|
63 |
+
if "tags" in layer_info:
|
64 |
+
if layer_info["tags"] in layer_indices_by_tag:
|
65 |
+
raise ValueError(f"Duplicate tag '{layer_info['tags']}' found.")
|
66 |
+
layer_indices_by_tag[layer_info["tags"]] = layer_idx
|
67 |
+
|
68 |
+
out_channels = self.get_out_channels(layer_type, layer_args, output_dim, source)
|
69 |
+
output_dim.append(out_channels)
|
70 |
+
self.model = model_list
|
71 |
+
|
72 |
+
def get_out_channels(self, layer_type, layer_args, output_dim, source):
|
73 |
+
if "Conv" in layer_type:
|
74 |
+
return layer_args["out_channels"]
|
75 |
+
if layer_type == "Concat":
|
76 |
+
return sum(output_dim[idx] for idx in source)
|
77 |
+
if "Pool" in layer_type:
|
78 |
+
return output_dim[source] // 2
|
79 |
+
if layer_type == "UpSample":
|
80 |
+
return output_dim[source] * 2
|
81 |
+
if layer_type == "IDetect":
|
82 |
+
return None
|
83 |
+
|
84 |
+
def create_layer(self, layer_type: str, **kwargs):
|
85 |
+
# Dictionary mapping layer names to actual layer classes
|
86 |
+
if layer_type in self.layer_map:
|
87 |
+
return self.layer_map[layer_type](**kwargs)
|
88 |
+
else:
|
89 |
+
raise ValueError(f"Unsupported layer type: {layer_type}")
|
90 |
|
91 |
|
92 |
def get_model(model_cfg: dict) -> YOLO:
|
|
|
100 |
"""
|
101 |
model = YOLO(model_cfg)
|
102 |
return model
|
103 |
+
|
104 |
+
|
105 |
+
if __name__ == "__main__":
|
106 |
+
model_cfg = load_model_cfg("v7-base")
|
107 |
+
|
108 |
+
YOLO(model_cfg)
|