henry000 commited on
Commit
9ae3eb5
·
1 Parent(s): 7d976be

🔥 [Remove] layer_helper, same func as module_helper

Browse files
yolo/model/yolo.py CHANGED
@@ -5,8 +5,8 @@ from loguru import logger
5
  from omegaconf import ListConfig, OmegaConf
6
 
7
  from yolo.config.config import Config, Model, YOLOLayer
8
- from yolo.tools.layer_helper import get_layer_map
9
  from yolo.tools.log_helper import log_model
 
10
  from yolo.utils.drawer import draw_model
11
 
12
 
 
5
  from omegaconf import ListConfig, OmegaConf
6
 
7
  from yolo.config.config import Config, Model, YOLOLayer
 
8
  from yolo.tools.log_helper import log_model
9
+ from yolo.tools.module_helper import get_layer_map
10
  from yolo.utils.drawer import draw_model
11
 
12
 
yolo/tools/layer_helper.py CHANGED
@@ -3,20 +3,3 @@ import inspect
3
  import torch.nn as nn
4
 
5
  from yolo.model import module
6
-
7
-
8
- def auto_pad():
9
- raise NotImplementedError
10
-
11
-
12
- def get_layer_map():
13
- """
14
- Dynamically generates a dictionary mapping class names to classes,
15
- filtering to include only those that are subclasses of nn.Module,
16
- ensuring they are relevant neural network layers.
17
- """
18
- layer_map = {}
19
- for name, obj in inspect.getmembers(module, inspect.isclass):
20
- if issubclass(obj, nn.Module) and obj is not nn.Module:
21
- layer_map[name] = obj
22
- return layer_map
 
3
  import torch.nn as nn
4
 
5
  from yolo.model import module
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yolo/tools/module_helper.py CHANGED
@@ -1,3 +1,4 @@
 
1
  from typing import Tuple, Union
2
 
3
  from torch import Tensor, nn
@@ -18,6 +19,21 @@ def auto_pad(kernel_size: _size_2_t, dilation: _size_2_t = 1, **kwargs) -> Tuple
18
  return (pad_h, pad_w)
19
 
20
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
  def get_activation(activation: str) -> nn.Module:
22
  """
23
  Retrieves an activation function from the PyTorch nn module based on its name, case-insensitively.
 
1
+ import inspect
2
  from typing import Tuple, Union
3
 
4
  from torch import Tensor, nn
 
19
  return (pad_h, pad_w)
20
 
21
 
22
+ def get_layer_map():
23
+ """
24
+ Dynamically generates a dictionary mapping class names to classes,
25
+ filtering to include only those that are subclasses of nn.Module,
26
+ ensuring they are relevant neural network layers.
27
+ """
28
+ layer_map = {}
29
+ from yolo.model import module
30
+
31
+ for name, obj in inspect.getmembers(module, inspect.isclass):
32
+ if issubclass(obj, nn.Module) and obj is not nn.Module:
33
+ layer_map[name] = obj
34
+ return layer_map
35
+
36
+
37
  def get_activation(activation: str) -> nn.Module:
38
  """
39
  Retrieves an activation function from the PyTorch nn module based on its name, case-insensitively.