henry000 commited on
Commit
9cc9e5d
Β·
1 Parent(s): 6e60091

πŸ“ [Update] README, modified link, typo, and table

Browse files
Files changed (2) hide show
  1. README.md +29 -15
  2. docs/MODELS.md +12 -13
README.md CHANGED
@@ -1,4 +1,4 @@
1
- # YOLO: Official Implementation of YOLOv{7, 9}
2
 
3
  ![WIP](https://img.shields.io/badge/status-WIP-orange)
4
  > [!IMPORTANT]
@@ -29,22 +29,36 @@ pip install -r requirements.txt
29
  ```
30
 
31
  ## Features
32
- - [x] Autodownload weights/datasets
33
- - [x] Pip installable
34
- - [x] Support for devices:
35
- - [x] CUDA
36
- - [x] MPS (PyTorch 2.3+)
37
- - [x] CPU
38
- - [x] Task:
39
- - [x] Training
40
- - [x] Inference
41
- - [ ] Validation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
 
43
  ## Task
44
- These are simple examples. For more customization details, please refer to [Notebooks](examples) and lower-level modifications **[HOWTO](docs/HOWTO)**.
45
 
46
  ## Training
47
- To train YOLOv9 on your dataset:
48
 
49
  1. Modify the configuration file `data/config.yaml` to point to your dataset.
50
  2. Run the training script:
@@ -62,7 +76,7 @@ python yolo/lazy.py task=train task.data.batch_size=8 model=v9-c dataset={datase
62
  To evaluate the model performance, use:
63
  ```shell
64
  python yolo/lazy.py task=inference weight=weights/v9-c.pt model=v9-c task.fast_inference=deploy # use deploy weight
65
- python python yolo/lazy.py task=inference # if cloned from GitHub
66
  yolo task=inference task.data.source={Any} # if pip installed
67
  ```
68
 
@@ -76,7 +90,7 @@ To validate the model performance, use:
76
  Contributions to the YOLOv9 project are welcome! See [CONTRIBUTING](docs/CONTRIBUTING.md) for guidelines on how to contribute.
77
 
78
  ## Star History
79
- [![Star History Chart](https://api.star-history.com/svg?repos=WongKinYiu/yolov9mit&type=Date)](https://star-history.com/#WongKinYiu/yolov9mit&Date)
80
 
81
  ## Citations
82
  ```
 
1
+ # YOLO: Official Implementation of YOLOv9, YOLOv7
2
 
3
  ![WIP](https://img.shields.io/badge/status-WIP-orange)
4
  > [!IMPORTANT]
 
29
  ```
30
 
31
  ## Features
32
+
33
+ <table>
34
+ <tr><td>
35
+
36
+ | Features Supported | pip 🐍 | Hugging Face πŸ€— | Docker 🐳 |
37
+ | -------------------- | :----: | :--------------: | :-------: |
38
+ | Compatibility | βœ… | ❔ | πŸ§ͺ |
39
+
40
+ | Processing Phase | Training | Validation | Inference |
41
+ | ------------------- | :------: | :---------: | :-------: |
42
+ | Supported | βœ… | βœ… | βœ… |
43
+
44
+ </td><td>
45
+
46
+ | Supporting Device | CUDA | CPU | MPS |
47
+ | ------------------ | :---------: | :-------: | :-------: |
48
+ | PyTorch | v1.12 | v2.3+ | v1.12 |
49
+ | ONNX | βœ… | βœ… | - |
50
+ | TensorRT | πŸ§ͺ | πŸ§ͺ | - |
51
+ | OpenVINO | - | πŸ§ͺ | ❔ |
52
+
53
+ </td></tr> </table>
54
+
55
+
56
 
57
  ## Task
58
+ These are simple examples. For more customization details, please refer to [Notebooks](examples) and lower-level modifications **[HOWTO](docs/HOWTO.md)**.
59
 
60
  ## Training
61
+ To train YOLO on your dataset:
62
 
63
  1. Modify the configuration file `data/config.yaml` to point to your dataset.
64
  2. Run the training script:
 
76
  To evaluate the model performance, use:
77
  ```shell
78
  python yolo/lazy.py task=inference weight=weights/v9-c.pt model=v9-c task.fast_inference=deploy # use deploy weight
79
+ python yolo/lazy.py task=inference # if cloned from GitHub
80
  yolo task=inference task.data.source={Any} # if pip installed
81
  ```
82
 
 
90
  Contributions to the YOLOv9 project are welcome! See [CONTRIBUTING](docs/CONTRIBUTING.md) for guidelines on how to contribute.
91
 
92
  ## Star History
93
+ [![Star History Chart](https://api.star-history.com/svg?repos=WongKinYiu/YOLO&type=Date)](https://star-history.com/#WongKinYiu/YOLO&Date)
94
 
95
  ## Citations
96
  ```
docs/MODELS.md CHANGED
@@ -7,20 +7,19 @@ Welcome to the YOLOv9 Model Zoo! Here, you will find a variety of pre-trained mo
7
  These models are trained on common datasets like COCO and provide a balance between speed and accuracy.
8
 
9
 
10
- | Model | Test Size | AP<sup>val</sup> | AP<sub>50</sub><sup>val</sup> | AP<sub>75</sub><sup>val</sup> | Param. | FLOPs |
11
- | :-- | :-: | :-: | :-: | :-: | :-: | :-: |
12
- | [**YOLOv9-T**]() | 640 | **38.3%** | **53.1%** | **41.3%** | **2.0M** | **7.7G** |
13
- | [**YOLOv9-S**]() | 640 | **46.8%** | **63.4%** | **50.7%** | **7.1M** | **26.4G** |
14
- | [**YOLOv9-M**]() | 640 | **51.4%** | **68.1%** | **56.1%** | **20.0M** | **76.3G** |
15
- | [**YOLOv9-C**]() | 640 | **53.0%** | **70.2%** | **57.8%** | **25.3M** | **102.1G** |
16
- | [**YOLOv9-E**]() | 640 | **55.6%** | **72.8%** | **60.6%** | **57.3M** | **189.0G** |
17
  | | | | | | | |
18
- | [**YOLOv7**]() | 640 | **51.4%** | **69.7%** | **55.9%** |
19
- | [**YOLOv7-X**]() | 640 | **53.1%** | **71.2%** | **57.8%** |
20
- | [**YOLOv7-W6**]() | 1280 | **54.9%** | **72.6%** | **60.1%** |
21
- | [**YOLOv7-E6**]() | 1280 | **56.0%** | **73.5%** | **61.2%** |
22
- | [**YOLOv7-D6**]() | 1280 | **56.6%** | **74.0%** | **61.8%** |
23
- | [**YOLOv7-E6E**]() | 1280 | **56.8%** | **74.4%** | **62.1%** |
24
 
25
  ## Download and Usage Instructions
26
 
 
7
  These models are trained on common datasets like COCO and provide a balance between speed and accuracy.
8
 
9
 
10
+ | Model | Support? |Test Size | AP<sup>val</sup> | AP<sub>50</sub><sup>val</sup> | AP<sub>75</sub><sup>val</sup> | Param. | FLOPs |
11
+ | :-- | :-: | :-: | :-: | :-: | :-: | :-: | :-: |
12
+ | [**YOLOv9-S**]() |βœ… | 640 | **46.8%** | **63.4%** | **50.7%** | **7.1M** | **26.4G** |
13
+ | [**YOLOv9-M**]() |βœ… | 640 | **51.4%** | **68.1%** | **56.1%** | **20.0M** | **76.3G** |
14
+ | [**YOLOv9-C**]() |βœ… | 640 | **53.0%** | **70.2%** | **57.8%** | **25.3M** | **102.1G** |
15
+ | [**YOLOv9-E**]() | πŸ”§ | 640 | **55.6%** | **72.8%** | **60.6%** | **57.3M** | **189.0G** |
 
16
  | | | | | | | |
17
+ | [**YOLOv7**]() |πŸ”§ | 640 | **51.4%** | **69.7%** | **55.9%** |
18
+ | [**YOLOv7-X**]() |πŸ”§ | 640 | **53.1%** | **71.2%** | **57.8%** |
19
+ | [**YOLOv7-W6**]() | πŸ”§ | 1280 | **54.9%** | **72.6%** | **60.1%** |
20
+ | [**YOLOv7-E6**]() | πŸ”§ | 1280 | **56.0%** | **73.5%** | **61.2%** |
21
+ | [**YOLOv7-D6**]() | πŸ”§ | 1280 | **56.6%** | **74.0%** | **61.8%** |
22
+ | [**YOLOv7-E6E**]() | πŸ”§ | 1280 | **56.8%** | **74.4%** | **62.1%** |
23
 
24
  ## Download and Usage Instructions
25