π [Update] README, modified link, typo, and table
Browse files- README.md +29 -15
- docs/MODELS.md +12 -13
README.md
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
# YOLO: Official Implementation of
|
2 |
|
3 |

|
4 |
> [!IMPORTANT]
|
@@ -29,22 +29,36 @@ pip install -r requirements.txt
|
|
29 |
```
|
30 |
|
31 |
## Features
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
## Task
|
44 |
-
These are simple examples. For more customization details, please refer to [Notebooks](examples) and lower-level modifications **[HOWTO](docs/HOWTO)**.
|
45 |
|
46 |
## Training
|
47 |
-
To train
|
48 |
|
49 |
1. Modify the configuration file `data/config.yaml` to point to your dataset.
|
50 |
2. Run the training script:
|
@@ -62,7 +76,7 @@ python yolo/lazy.py task=train task.data.batch_size=8 model=v9-c dataset={datase
|
|
62 |
To evaluate the model performance, use:
|
63 |
```shell
|
64 |
python yolo/lazy.py task=inference weight=weights/v9-c.pt model=v9-c task.fast_inference=deploy # use deploy weight
|
65 |
-
python
|
66 |
yolo task=inference task.data.source={Any} # if pip installed
|
67 |
```
|
68 |
|
@@ -76,7 +90,7 @@ To validate the model performance, use:
|
|
76 |
Contributions to the YOLOv9 project are welcome! See [CONTRIBUTING](docs/CONTRIBUTING.md) for guidelines on how to contribute.
|
77 |
|
78 |
## Star History
|
79 |
-
[
|
4 |
> [!IMPORTANT]
|
|
|
29 |
```
|
30 |
|
31 |
## Features
|
32 |
+
|
33 |
+
<table>
|
34 |
+
<tr><td>
|
35 |
+
|
36 |
+
| Features Supported | pip π | Hugging Face π€ | Docker π³ |
|
37 |
+
| -------------------- | :----: | :--------------: | :-------: |
|
38 |
+
| Compatibility | β
| β | π§ͺ |
|
39 |
+
|
40 |
+
| Processing Phase | Training | Validation | Inference |
|
41 |
+
| ------------------- | :------: | :---------: | :-------: |
|
42 |
+
| Supported | β
| β
| β
|
|
43 |
+
|
44 |
+
</td><td>
|
45 |
+
|
46 |
+
| Supporting Device | CUDA | CPU | MPS |
|
47 |
+
| ------------------ | :---------: | :-------: | :-------: |
|
48 |
+
| PyTorch | v1.12 | v2.3+ | v1.12 |
|
49 |
+
| ONNX | β
| β
| - |
|
50 |
+
| TensorRT | π§ͺ | π§ͺ | - |
|
51 |
+
| OpenVINO | - | π§ͺ | β |
|
52 |
+
|
53 |
+
</td></tr> </table>
|
54 |
+
|
55 |
+
|
56 |
|
57 |
## Task
|
58 |
+
These are simple examples. For more customization details, please refer to [Notebooks](examples) and lower-level modifications **[HOWTO](docs/HOWTO.md)**.
|
59 |
|
60 |
## Training
|
61 |
+
To train YOLO on your dataset:
|
62 |
|
63 |
1. Modify the configuration file `data/config.yaml` to point to your dataset.
|
64 |
2. Run the training script:
|
|
|
76 |
To evaluate the model performance, use:
|
77 |
```shell
|
78 |
python yolo/lazy.py task=inference weight=weights/v9-c.pt model=v9-c task.fast_inference=deploy # use deploy weight
|
79 |
+
python yolo/lazy.py task=inference # if cloned from GitHub
|
80 |
yolo task=inference task.data.source={Any} # if pip installed
|
81 |
```
|
82 |
|
|
|
90 |
Contributions to the YOLOv9 project are welcome! See [CONTRIBUTING](docs/CONTRIBUTING.md) for guidelines on how to contribute.
|
91 |
|
92 |
## Star History
|
93 |
+
[](https://star-history.com/#WongKinYiu/YOLO&Date)
|
94 |
|
95 |
## Citations
|
96 |
```
|
docs/MODELS.md
CHANGED
@@ -7,20 +7,19 @@ Welcome to the YOLOv9 Model Zoo! Here, you will find a variety of pre-trained mo
|
|
7 |
These models are trained on common datasets like COCO and provide a balance between speed and accuracy.
|
8 |
|
9 |
|
10 |
-
| Model | Test Size | AP<sup>val</sup> | AP<sub>50</sub><sup>val</sup> | AP<sub>75</sub><sup>val</sup> | Param. | FLOPs |
|
11 |
-
| :-- | :-: | :-: | :-: | :-: | :-: | :-: |
|
12 |
-
| [**YOLOv9-
|
13 |
-
| [**YOLOv9-
|
14 |
-
| [**YOLOv9-
|
15 |
-
| [**YOLOv9-
|
16 |
-
| [**YOLOv9-E**]() | 640 | **55.6%** | **72.8%** | **60.6%** | **57.3M** | **189.0G** |
|
17 |
| | | | | | | |
|
18 |
-
| [**YOLOv7**]() | 640
|
19 |
-
| [**YOLOv7-X**]() | 640
|
20 |
-
| [**YOLOv7-W6**]() | 1280 | **54.9%** | **72.6%** | **60.1%** |
|
21 |
-
| [**YOLOv7-E6**]() | 1280 | **56.0%** | **73.5%** | **61.2%** |
|
22 |
-
| [**YOLOv7-D6**]() | 1280 | **56.6%** | **74.0%** | **61.8%** |
|
23 |
-
| [**YOLOv7-E6E**]() | 1280 | **56.8%** | **74.4%** | **62.1%** |
|
24 |
|
25 |
## Download and Usage Instructions
|
26 |
|
|
|
7 |
These models are trained on common datasets like COCO and provide a balance between speed and accuracy.
|
8 |
|
9 |
|
10 |
+
| Model | Support? |Test Size | AP<sup>val</sup> | AP<sub>50</sub><sup>val</sup> | AP<sub>75</sub><sup>val</sup> | Param. | FLOPs |
|
11 |
+
| :-- | :-: | :-: | :-: | :-: | :-: | :-: | :-: |
|
12 |
+
| [**YOLOv9-S**]() |β
| 640 | **46.8%** | **63.4%** | **50.7%** | **7.1M** | **26.4G** |
|
13 |
+
| [**YOLOv9-M**]() |β
| 640 | **51.4%** | **68.1%** | **56.1%** | **20.0M** | **76.3G** |
|
14 |
+
| [**YOLOv9-C**]() |β
| 640 | **53.0%** | **70.2%** | **57.8%** | **25.3M** | **102.1G** |
|
15 |
+
| [**YOLOv9-E**]() | π§ | 640 | **55.6%** | **72.8%** | **60.6%** | **57.3M** | **189.0G** |
|
|
|
16 |
| | | | | | | |
|
17 |
+
| [**YOLOv7**]() |π§ | 640 | **51.4%** | **69.7%** | **55.9%** |
|
18 |
+
| [**YOLOv7-X**]() |π§ | 640 | **53.1%** | **71.2%** | **57.8%** |
|
19 |
+
| [**YOLOv7-W6**]() | π§ | 1280 | **54.9%** | **72.6%** | **60.1%** |
|
20 |
+
| [**YOLOv7-E6**]() | π§ | 1280 | **56.0%** | **73.5%** | **61.2%** |
|
21 |
+
| [**YOLOv7-D6**]() | π§ | 1280 | **56.6%** | **74.0%** | **61.8%** |
|
22 |
+
| [**YOLOv7-E6E**]() | π§ | 1280 | **56.8%** | **74.4%** | **62.1%** |
|
23 |
|
24 |
## Download and Usage Instructions
|
25 |
|