π [Update] logs to meet the inference stage
Browse files
yolo/utils/logging_utils.py
CHANGED
@@ -56,7 +56,7 @@ class ProgressTracker:
|
|
56 |
def start_train(self, num_epochs: int):
|
57 |
self.task_epoch = self.progress.add_task("[cyan]Epochs [white]| Loss | Box | DFL | BCE |", total=num_epochs)
|
58 |
|
59 |
-
def start_one_epoch(self, num_batches: int, optimizer: Optimizer, epoch_idx: int):
|
60 |
self.num_batches = num_batches
|
61 |
if self.use_wandb:
|
62 |
lr_values = [params["lr"] for params in optimizer.param_groups]
|
@@ -65,7 +65,10 @@ class ProgressTracker:
|
|
65 |
self.wandb.log({f"Learning Rate/{lr_name}": lr_value}, step=epoch_idx)
|
66 |
self.batch_task = self.progress.add_task("[green]Batches", total=num_batches)
|
67 |
|
68 |
-
def one_batch(self, loss_dict: Dict[str, Tensor]):
|
|
|
|
|
|
|
69 |
if self.use_wandb:
|
70 |
for loss_name, loss_value in loss_dict.items():
|
71 |
self.wandb.log({f"Loss/{loss_name}": loss_value})
|
|
|
56 |
def start_train(self, num_epochs: int):
|
57 |
self.task_epoch = self.progress.add_task("[cyan]Epochs [white]| Loss | Box | DFL | BCE |", total=num_epochs)
|
58 |
|
59 |
+
def start_one_epoch(self, num_batches: int, optimizer: Optimizer = None, epoch_idx: int = None):
|
60 |
self.num_batches = num_batches
|
61 |
if self.use_wandb:
|
62 |
lr_values = [params["lr"] for params in optimizer.param_groups]
|
|
|
65 |
self.wandb.log({f"Learning Rate/{lr_name}": lr_value}, step=epoch_idx)
|
66 |
self.batch_task = self.progress.add_task("[green]Batches", total=num_batches)
|
67 |
|
68 |
+
def one_batch(self, loss_dict: Dict[str, Tensor] = None, mapp=None):
|
69 |
+
if loss_dict is None:
|
70 |
+
self.progress.update(self.batch_task, advance=1, description=f"[green]Batches [white]{mapp:.2%}")
|
71 |
+
return
|
72 |
if self.use_wandb:
|
73 |
for loss_name, loss_value in loss_dict.items():
|
74 |
self.wandb.log({f"Loss/{loss_name}": loss_value})
|