♻️ [Refactor] the code in deploy model
Browse files- yolo/utils/deploy_utils.py +24 -23
yolo/utils/deploy_utils.py
CHANGED
@@ -1,3 +1,5 @@
|
|
|
|
|
|
1 |
import torch
|
2 |
from loguru import logger
|
3 |
from torch import Tensor
|
@@ -9,24 +11,24 @@ from yolo.model.yolo import create_model
|
|
9 |
class FastModelLoader:
|
10 |
def __init__(self, cfg: Config):
|
11 |
self.cfg = cfg
|
12 |
-
self.compiler =
|
|
|
|
|
|
|
|
|
13 |
if self.compiler not in ["onnx", "trt"]:
|
14 |
-
logger.warning(f"⚠️ {self.compiler} is not supported
|
15 |
self.compiler = None
|
16 |
if self.cfg.device == "mps" and self.compiler == "trt":
|
17 |
-
logger.warning("🍎 TensorRT does not support MPS devices
|
18 |
self.compiler = None
|
19 |
-
self.weight = cfg.weight.split(".")[0] + "." + self.compiler
|
20 |
|
21 |
def load_model(self):
|
22 |
if self.compiler == "onnx":
|
23 |
-
logger.info("🚀 Try to use ONNX")
|
24 |
return self._load_onnx_model()
|
25 |
elif self.compiler == "trt":
|
26 |
-
logger.info("🚀 Try to use TensorRT")
|
27 |
return self._load_trt_model()
|
28 |
-
|
29 |
-
return create_model(self.cfg)
|
30 |
|
31 |
def _load_onnx_model(self):
|
32 |
from onnxruntime import InferenceSession
|
@@ -37,17 +39,17 @@ class FastModelLoader:
|
|
37 |
return [x]
|
38 |
|
39 |
InferenceSession.__call__ = onnx_forward
|
40 |
-
|
41 |
try:
|
42 |
-
ort_session = InferenceSession(self.
|
|
|
43 |
except Exception as e:
|
44 |
logger.warning(f"🈳 Error loading ONNX model: {e}")
|
45 |
-
ort_session = self.
|
46 |
# TODO: Update if GPU onnx unavailable change to cpu
|
47 |
self.cfg.device = "cpu"
|
48 |
return ort_session
|
49 |
|
50 |
-
def
|
51 |
from onnxruntime import InferenceSession
|
52 |
from torch.onnx import export
|
53 |
|
@@ -56,34 +58,33 @@ class FastModelLoader:
|
|
56 |
export(
|
57 |
model,
|
58 |
dummy_input,
|
59 |
-
self.
|
60 |
input_names=["input"],
|
61 |
output_names=["output"],
|
62 |
dynamic_axes={"input": {0: "batch_size"}, "output": {0: "batch_size"}},
|
63 |
)
|
64 |
-
logger.info(f"📥 ONNX model saved to {self.
|
65 |
-
return InferenceSession(self.
|
66 |
|
67 |
def _load_trt_model(self):
|
68 |
from torch2trt import TRTModule
|
69 |
|
70 |
-
model_trt = TRTModule()
|
71 |
-
|
72 |
try:
|
73 |
model_trt = TRTModule()
|
74 |
-
model_trt.load_state_dict(torch.load(self.
|
|
|
75 |
except FileNotFoundError:
|
76 |
-
logger.warning(f"🈳 No found model weight at {self.
|
77 |
-
model_trt = self.
|
78 |
return model_trt
|
79 |
|
80 |
-
def
|
81 |
from torch2trt import torch2trt
|
82 |
|
83 |
model = create_model(self.cfg).eval()
|
84 |
dummy_input = torch.ones((1, 3, *self.cfg.image_size))
|
85 |
logger.info(f"♻️ Creating TensorRT model")
|
86 |
model_trt = torch2trt(model, [dummy_input])
|
87 |
-
torch.save(model_trt.state_dict(), self.
|
88 |
-
logger.info(f"📥 TensorRT model saved to {self.
|
89 |
return model_trt
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
import torch
|
4 |
from loguru import logger
|
5 |
from torch import Tensor
|
|
|
11 |
class FastModelLoader:
|
12 |
def __init__(self, cfg: Config):
|
13 |
self.cfg = cfg
|
14 |
+
self.compiler = cfg.task.fast_inference
|
15 |
+
self._validate_compiler()
|
16 |
+
self.model_path = f"{os.path.splitext(cfg.weight)[0]}.{self.compiler}"
|
17 |
+
|
18 |
+
def _validate_compiler(self):
|
19 |
if self.compiler not in ["onnx", "trt"]:
|
20 |
+
logger.warning(f"⚠️ Compiler '{self.compiler}' is not supported. Using original model.")
|
21 |
self.compiler = None
|
22 |
if self.cfg.device == "mps" and self.compiler == "trt":
|
23 |
+
logger.warning("🍎 TensorRT does not support MPS devices. Using original model.")
|
24 |
self.compiler = None
|
|
|
25 |
|
26 |
def load_model(self):
|
27 |
if self.compiler == "onnx":
|
|
|
28 |
return self._load_onnx_model()
|
29 |
elif self.compiler == "trt":
|
|
|
30 |
return self._load_trt_model()
|
31 |
+
return create_model(self.cfg)
|
|
|
32 |
|
33 |
def _load_onnx_model(self):
|
34 |
from onnxruntime import InferenceSession
|
|
|
39 |
return [x]
|
40 |
|
41 |
InferenceSession.__call__ = onnx_forward
|
|
|
42 |
try:
|
43 |
+
ort_session = InferenceSession(self.model_path)
|
44 |
+
logger.info("🚀 Using ONNX as MODEL frameworks!")
|
45 |
except Exception as e:
|
46 |
logger.warning(f"🈳 Error loading ONNX model: {e}")
|
47 |
+
ort_session = self._create_onnx_model()
|
48 |
# TODO: Update if GPU onnx unavailable change to cpu
|
49 |
self.cfg.device = "cpu"
|
50 |
return ort_session
|
51 |
|
52 |
+
def _create_onnx_model(self):
|
53 |
from onnxruntime import InferenceSession
|
54 |
from torch.onnx import export
|
55 |
|
|
|
58 |
export(
|
59 |
model,
|
60 |
dummy_input,
|
61 |
+
self.model_path,
|
62 |
input_names=["input"],
|
63 |
output_names=["output"],
|
64 |
dynamic_axes={"input": {0: "batch_size"}, "output": {0: "batch_size"}},
|
65 |
)
|
66 |
+
logger.info(f"📥 ONNX model saved to {self.model_path}")
|
67 |
+
return InferenceSession(self.model_path)
|
68 |
|
69 |
def _load_trt_model(self):
|
70 |
from torch2trt import TRTModule
|
71 |
|
|
|
|
|
72 |
try:
|
73 |
model_trt = TRTModule()
|
74 |
+
model_trt.load_state_dict(torch.load(self.model_path))
|
75 |
+
logger.info("🚀 Using TensorRT as MODEL frameworks!")
|
76 |
except FileNotFoundError:
|
77 |
+
logger.warning(f"🈳 No found model weight at {self.model_path}")
|
78 |
+
model_trt = self._create_trt_model()
|
79 |
return model_trt
|
80 |
|
81 |
+
def _create_trt_model(self):
|
82 |
from torch2trt import torch2trt
|
83 |
|
84 |
model = create_model(self.cfg).eval()
|
85 |
dummy_input = torch.ones((1, 3, *self.cfg.image_size))
|
86 |
logger.info(f"♻️ Creating TensorRT model")
|
87 |
model_trt = torch2trt(model, [dummy_input])
|
88 |
+
torch.save(model_trt.state_dict(), self.model_path)
|
89 |
+
logger.info(f"📥 TensorRT model saved to {self.model_path}")
|
90 |
return model_trt
|