✨ [New] YOLOv7 structure! enable build model
Browse files- yolo/config/model/v7-base.yaml +26 -17
- yolo/model/module.py +90 -1
yolo/config/model/v7-base.yaml
CHANGED
@@ -1,11 +1,17 @@
|
|
|
|
|
|
1 |
anchor:
|
2 |
-
|
|
|
|
|
|
|
3 |
strides: [8, 16, 32]
|
4 |
|
5 |
model:
|
6 |
backbone:
|
7 |
- Conv:
|
8 |
args: {out_channels: 32, kernel_size: 3}
|
|
|
9 |
- Conv:
|
10 |
args: {out_channels: 64, kernel_size: 3, stride: 2}
|
11 |
- Conv:
|
@@ -55,7 +61,7 @@ model:
|
|
55 |
args: {out_channels: 128, kernel_size: 3}
|
56 |
- Concat:
|
57 |
source: [-1, -3, -5, -6]
|
58 |
-
tags:
|
59 |
- Conv:
|
60 |
args: {out_channels: 512, kernel_size: 1}
|
61 |
- Pool:
|
@@ -86,7 +92,7 @@ model:
|
|
86 |
source: [-1, -3, -5, -6]
|
87 |
- Conv:
|
88 |
args: {out_channels: 1024, kernel_size: 1}
|
89 |
-
tags:
|
90 |
- Pool:
|
91 |
args: {padding: 0}
|
92 |
- Conv:
|
@@ -115,17 +121,18 @@ model:
|
|
115 |
source: [-1, -3, -5, -6]
|
116 |
- Conv:
|
117 |
args: {out_channels: 1024, kernel_size: 1}
|
118 |
-
tags:
|
119 |
head:
|
120 |
- SPPCSPConv:
|
121 |
args: {out_channels: 512}
|
|
|
122 |
- Conv:
|
123 |
args: {out_channels: 256, kernel_size: 1}
|
124 |
- UpSample:
|
125 |
args: {scale_factor: 2}
|
126 |
- Conv:
|
127 |
args: {out_channels: 256, kernel_size: 1}
|
128 |
-
source:
|
129 |
- Concat:
|
130 |
source: [-1, -2]
|
131 |
- Conv:
|
@@ -145,13 +152,14 @@ model:
|
|
145 |
source: [-1, -2, -3, -4, -5, -6]
|
146 |
- Conv:
|
147 |
args: {out_channels: 256, kernel_size: 1}
|
|
|
148 |
- Conv:
|
149 |
args: {out_channels: 128, kernel_size: 1}
|
150 |
- UpSample:
|
151 |
args: {scale_factor: 2}
|
152 |
- Conv:
|
153 |
args: {out_channels: 128, kernel_size: 1}
|
154 |
-
source:
|
155 |
- Concat:
|
156 |
source: [-1, -2]
|
157 |
- Conv:
|
@@ -171,6 +179,7 @@ model:
|
|
171 |
source: [-1, -2, -3, -4, -5, -6]
|
172 |
- Conv:
|
173 |
args: {out_channels: 128, kernel_size: 1}
|
|
|
174 |
- Pool:
|
175 |
args: {padding: 0}
|
176 |
- Conv:
|
@@ -181,7 +190,7 @@ model:
|
|
181 |
- Conv:
|
182 |
args: {out_channels: 128, kernel_size: 3, stride: 2}
|
183 |
- Concat:
|
184 |
-
source: [-1, -3,
|
185 |
- Conv:
|
186 |
args: {out_channels: 256, kernel_size: 1}
|
187 |
- Conv:
|
@@ -199,6 +208,7 @@ model:
|
|
199 |
source: [-1, -2, -3, -4, -5, -6]
|
200 |
- Conv:
|
201 |
args: {out_channels: 256, kernel_size: 1}
|
|
|
202 |
- Pool:
|
203 |
args: {padding: 0}
|
204 |
- Conv:
|
@@ -209,7 +219,7 @@ model:
|
|
209 |
- Conv:
|
210 |
args: {out_channels: 256, kernel_size: 3, stride: 2}
|
211 |
- Concat:
|
212 |
-
source: [-1, -3,
|
213 |
- Conv:
|
214 |
args: {out_channels: 512, kernel_size: 1}
|
215 |
- Conv:
|
@@ -227,20 +237,19 @@ model:
|
|
227 |
source: [-1, -2, -3, -4, -5, -6]
|
228 |
- Conv:
|
229 |
args: {out_channels: 512, kernel_size: 1}
|
|
|
230 |
- RepConv:
|
231 |
args: {out_channels: 256}
|
232 |
-
source:
|
233 |
- RepConv:
|
234 |
args: {out_channels: 512}
|
235 |
-
source:
|
236 |
- RepConv:
|
237 |
args: {out_channels: 1024}
|
238 |
-
source:
|
239 |
-
-
|
240 |
args:
|
241 |
-
|
242 |
-
|
243 |
-
- [36,75, 76,55, 72,146] # P4/16
|
244 |
-
- [142,110, 192,243, 459,401] # P5/32
|
245 |
-
source: [102, 103, 104]
|
246 |
output: True
|
|
|
|
1 |
+
name: v7-base
|
2 |
+
|
3 |
anchor:
|
4 |
+
anchor:
|
5 |
+
- [12,16, 19,36, 40,28] # P5/8
|
6 |
+
- [36,75, 76,55, 72,146] # P4/16
|
7 |
+
- [142,110, 192,243, 459,401] # P5/32
|
8 |
strides: [8, 16, 32]
|
9 |
|
10 |
model:
|
11 |
backbone:
|
12 |
- Conv:
|
13 |
args: {out_channels: 32, kernel_size: 3}
|
14 |
+
source: 0
|
15 |
- Conv:
|
16 |
args: {out_channels: 64, kernel_size: 3, stride: 2}
|
17 |
- Conv:
|
|
|
61 |
args: {out_channels: 128, kernel_size: 3}
|
62 |
- Concat:
|
63 |
source: [-1, -3, -5, -6]
|
64 |
+
tags: B3
|
65 |
- Conv:
|
66 |
args: {out_channels: 512, kernel_size: 1}
|
67 |
- Pool:
|
|
|
92 |
source: [-1, -3, -5, -6]
|
93 |
- Conv:
|
94 |
args: {out_channels: 1024, kernel_size: 1}
|
95 |
+
tags: B4
|
96 |
- Pool:
|
97 |
args: {padding: 0}
|
98 |
- Conv:
|
|
|
121 |
source: [-1, -3, -5, -6]
|
122 |
- Conv:
|
123 |
args: {out_channels: 1024, kernel_size: 1}
|
124 |
+
tags: B5
|
125 |
head:
|
126 |
- SPPCSPConv:
|
127 |
args: {out_channels: 512}
|
128 |
+
tags: N3
|
129 |
- Conv:
|
130 |
args: {out_channels: 256, kernel_size: 1}
|
131 |
- UpSample:
|
132 |
args: {scale_factor: 2}
|
133 |
- Conv:
|
134 |
args: {out_channels: 256, kernel_size: 1}
|
135 |
+
source: B4
|
136 |
- Concat:
|
137 |
source: [-1, -2]
|
138 |
- Conv:
|
|
|
152 |
source: [-1, -2, -3, -4, -5, -6]
|
153 |
- Conv:
|
154 |
args: {out_channels: 256, kernel_size: 1}
|
155 |
+
tags: N2
|
156 |
- Conv:
|
157 |
args: {out_channels: 128, kernel_size: 1}
|
158 |
- UpSample:
|
159 |
args: {scale_factor: 2}
|
160 |
- Conv:
|
161 |
args: {out_channels: 128, kernel_size: 1}
|
162 |
+
source: B3
|
163 |
- Concat:
|
164 |
source: [-1, -2]
|
165 |
- Conv:
|
|
|
179 |
source: [-1, -2, -3, -4, -5, -6]
|
180 |
- Conv:
|
181 |
args: {out_channels: 128, kernel_size: 1}
|
182 |
+
tags: P3
|
183 |
- Pool:
|
184 |
args: {padding: 0}
|
185 |
- Conv:
|
|
|
190 |
- Conv:
|
191 |
args: {out_channels: 128, kernel_size: 3, stride: 2}
|
192 |
- Concat:
|
193 |
+
source: [-1, -3, N2]
|
194 |
- Conv:
|
195 |
args: {out_channels: 256, kernel_size: 1}
|
196 |
- Conv:
|
|
|
208 |
source: [-1, -2, -3, -4, -5, -6]
|
209 |
- Conv:
|
210 |
args: {out_channels: 256, kernel_size: 1}
|
211 |
+
tags: P4
|
212 |
- Pool:
|
213 |
args: {padding: 0}
|
214 |
- Conv:
|
|
|
219 |
- Conv:
|
220 |
args: {out_channels: 256, kernel_size: 3, stride: 2}
|
221 |
- Concat:
|
222 |
+
source: [-1, -3, N3]
|
223 |
- Conv:
|
224 |
args: {out_channels: 512, kernel_size: 1}
|
225 |
- Conv:
|
|
|
237 |
source: [-1, -2, -3, -4, -5, -6]
|
238 |
- Conv:
|
239 |
args: {out_channels: 512, kernel_size: 1}
|
240 |
+
tags: P5
|
241 |
- RepConv:
|
242 |
args: {out_channels: 256}
|
243 |
+
source: P3
|
244 |
- RepConv:
|
245 |
args: {out_channels: 512}
|
246 |
+
source: P4
|
247 |
- RepConv:
|
248 |
args: {out_channels: 1024}
|
249 |
+
source: P5
|
250 |
+
- MultiheadDetection:
|
251 |
args:
|
252 |
+
version: v7
|
253 |
+
source: [-3, -2, -1]
|
|
|
|
|
|
|
254 |
output: True
|
255 |
+
tags: Main
|
yolo/model/module.py
CHANGED
@@ -91,13 +91,40 @@ class Detection(nn.Module):
|
|
91 |
return class_x, anchor_x, vector_x
|
92 |
|
93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
class MultiheadDetection(nn.Module):
|
95 |
"""Mutlihead Detection module for Dual detect or Triple detect"""
|
96 |
|
97 |
def __init__(self, in_channels: List[int], num_classes: int, **head_kwargs):
|
98 |
super().__init__()
|
|
|
|
|
|
|
|
|
|
|
99 |
self.heads = nn.ModuleList(
|
100 |
-
[
|
101 |
)
|
102 |
|
103 |
def forward(self, x_list: List[torch.Tensor]) -> List[torch.Tensor]:
|
@@ -320,6 +347,32 @@ class CBLinear(nn.Module):
|
|
320 |
return x.split(self.out_channels, dim=1)
|
321 |
|
322 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
323 |
class SPPELAN(nn.Module):
|
324 |
"""SPPELAN module comprising multiple pooling and convolution layers."""
|
325 |
|
@@ -360,3 +413,39 @@ class CBFuse(nn.Module):
|
|
360 |
res = [F.interpolate(x[pick_id], size=target_size, mode=self.mode) for pick_id, x in zip(self.idx, x_list)]
|
361 |
out = torch.stack(res + [target]).sum(dim=0)
|
362 |
return out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
return class_x, anchor_x, vector_x
|
92 |
|
93 |
|
94 |
+
class IDetection(nn.Module):
|
95 |
+
def __init__(self, in_channels: Tuple[int], num_classes: int, *args, anchor_num: int = 3, **kwargs):
|
96 |
+
super().__init__()
|
97 |
+
|
98 |
+
if isinstance(in_channels, tuple):
|
99 |
+
in_channels = in_channels[1]
|
100 |
+
|
101 |
+
out_channel = num_classes + 5
|
102 |
+
out_channels = out_channel * anchor_num
|
103 |
+
self.head_conv = nn.Conv2d(in_channels, out_channels, 1)
|
104 |
+
|
105 |
+
self.implicit_a = ImplicitA(in_channels)
|
106 |
+
self.implicit_m = ImplicitM(out_channels)
|
107 |
+
|
108 |
+
def forward(self, x):
|
109 |
+
x = self.implicit_a(x)
|
110 |
+
x = self.head_conv(x)
|
111 |
+
x = self.implicit_m(x)
|
112 |
+
|
113 |
+
return x
|
114 |
+
|
115 |
+
|
116 |
class MultiheadDetection(nn.Module):
|
117 |
"""Mutlihead Detection module for Dual detect or Triple detect"""
|
118 |
|
119 |
def __init__(self, in_channels: List[int], num_classes: int, **head_kwargs):
|
120 |
super().__init__()
|
121 |
+
DetectionHead = Detection
|
122 |
+
|
123 |
+
if head_kwargs.pop("version", None) == "v7":
|
124 |
+
DetectionHead = IDetection
|
125 |
+
|
126 |
self.heads = nn.ModuleList(
|
127 |
+
[DetectionHead((in_channels[0], in_channel), num_classes, **head_kwargs) for in_channel in in_channels]
|
128 |
)
|
129 |
|
130 |
def forward(self, x_list: List[torch.Tensor]) -> List[torch.Tensor]:
|
|
|
347 |
return x.split(self.out_channels, dim=1)
|
348 |
|
349 |
|
350 |
+
class SPPCSPConv(nn.Module):
|
351 |
+
# CSP https://github.com/WongKinYiu/CrossStagePartialNetworks
|
352 |
+
def __init__(self, in_channels: int, out_channels: int, expand: float = 0.5, kernel_sizes: Tuple[int] = (5, 9, 13)):
|
353 |
+
super().__init__()
|
354 |
+
neck_channels = int(2 * out_channels * expand)
|
355 |
+
self.pre_conv = nn.Sequential(
|
356 |
+
Conv(in_channels, neck_channels, 1),
|
357 |
+
Conv(neck_channels, neck_channels, 3),
|
358 |
+
Conv(neck_channels, neck_channels, 1),
|
359 |
+
)
|
360 |
+
self.short_conv = Conv(in_channels, neck_channels, 1)
|
361 |
+
self.pools = nn.ModuleList([Pool(kernel_size=kernel_size, stride=1) for kernel_size in kernel_sizes])
|
362 |
+
self.post_conv = nn.Sequential(Conv(4 * neck_channels, neck_channels, 1), Conv(neck_channels, neck_channels, 3))
|
363 |
+
self.merge_conv = Conv(2 * neck_channels, out_channels, 1)
|
364 |
+
|
365 |
+
def forward(self, x):
|
366 |
+
features = [self.pre_conv(x)]
|
367 |
+
for pool in self.pools:
|
368 |
+
features.append(pool(features[-1]))
|
369 |
+
features = torch.cat(features, dim=1)
|
370 |
+
y1 = self.post_conv(features)
|
371 |
+
y2 = self.short_conv(x)
|
372 |
+
y = torch.cat((y1, y2), dim=1)
|
373 |
+
return self.merge_conv(y)
|
374 |
+
|
375 |
+
|
376 |
class SPPELAN(nn.Module):
|
377 |
"""SPPELAN module comprising multiple pooling and convolution layers."""
|
378 |
|
|
|
413 |
res = [F.interpolate(x[pick_id], size=target_size, mode=self.mode) for pick_id, x in zip(self.idx, x_list)]
|
414 |
out = torch.stack(res + [target]).sum(dim=0)
|
415 |
return out
|
416 |
+
|
417 |
+
|
418 |
+
class ImplicitA(nn.Module):
|
419 |
+
"""
|
420 |
+
Implement YOLOR - implicit knowledge(Add), paper: https://arxiv.org/abs/2105.04206
|
421 |
+
"""
|
422 |
+
|
423 |
+
def __init__(self, channel: int, mean: float = 0.0, std: float = 0.02):
|
424 |
+
super().__init__()
|
425 |
+
self.channel = channel
|
426 |
+
self.mean = mean
|
427 |
+
self.std = std
|
428 |
+
|
429 |
+
self.implicit = nn.Parameter(torch.empty(1, channel, 1, 1))
|
430 |
+
nn.init.normal_(self.implicit, mean=mean, std=self.std)
|
431 |
+
|
432 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
433 |
+
return self.implicit + x
|
434 |
+
|
435 |
+
|
436 |
+
class ImplicitM(nn.Module):
|
437 |
+
"""
|
438 |
+
Implement YOLOR - implicit knowledge(multiply), paper: https://arxiv.org/abs/2105.04206
|
439 |
+
"""
|
440 |
+
|
441 |
+
def __init__(self, channel: int, mean: float = 1.0, std: float = 0.02):
|
442 |
+
super().__init__()
|
443 |
+
self.channel = channel
|
444 |
+
self.mean = mean
|
445 |
+
self.std = std
|
446 |
+
|
447 |
+
self.implicit = nn.Parameter(torch.empty(1, channel, 1, 1))
|
448 |
+
nn.init.normal_(self.implicit, mean=self.mean, std=self.std)
|
449 |
+
|
450 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
451 |
+
return self.implicit * x
|