✨ [New] v9-s, v9-m model! new model arch& weight
Browse files- yolo/config/model/v9-m.yaml +133 -0
- yolo/config/model/v9-s.yaml +134 -0
- yolo/model/module.py +45 -20
yolo/config/model/v9-m.yaml
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
anchor:
|
2 |
+
reg_max: 16
|
3 |
+
|
4 |
+
model:
|
5 |
+
backbone:
|
6 |
+
- Conv:
|
7 |
+
args: {out_channels: 32, kernel_size: 3, stride: 2}
|
8 |
+
source: 0
|
9 |
+
- Conv:
|
10 |
+
args: {out_channels: 64, kernel_size: 3, stride: 2}
|
11 |
+
- RepNCSPELAN:
|
12 |
+
args: {out_channels: 128, part_channels: 128}
|
13 |
+
|
14 |
+
- AConv:
|
15 |
+
args: {out_channels: 240}
|
16 |
+
- RepNCSPELAN:
|
17 |
+
args: {out_channels: 240, part_channels: 240}
|
18 |
+
tags: B3
|
19 |
+
|
20 |
+
- AConv:
|
21 |
+
args: {out_channels: 360}
|
22 |
+
- RepNCSPELAN:
|
23 |
+
args: {out_channels: 360, part_channels: 360}
|
24 |
+
tags: B4
|
25 |
+
|
26 |
+
- AConv:
|
27 |
+
args: {out_channels: 480}
|
28 |
+
- RepNCSPELAN:
|
29 |
+
args: {out_channels: 480, part_channels: 480}
|
30 |
+
tags: B5
|
31 |
+
|
32 |
+
neck:
|
33 |
+
- SPPELAN:
|
34 |
+
args: {out_channels: 480}
|
35 |
+
tags: N3
|
36 |
+
|
37 |
+
- UpSample:
|
38 |
+
args: {scale_factor: 2, mode: nearest}
|
39 |
+
- Concat:
|
40 |
+
source: [-1, B4]
|
41 |
+
- RepNCSPELAN:
|
42 |
+
args: {out_channels: 360, part_channels: 360}
|
43 |
+
tags: N4
|
44 |
+
|
45 |
+
- UpSample:
|
46 |
+
args: {scale_factor: 2, mode: nearest}
|
47 |
+
- Concat:
|
48 |
+
source: [-1, B3]
|
49 |
+
|
50 |
+
head:
|
51 |
+
- RepNCSPELAN:
|
52 |
+
args: {out_channels: 240, part_channels: 240}
|
53 |
+
tags: P3
|
54 |
+
|
55 |
+
- AConv:
|
56 |
+
args: {out_channels: 184}
|
57 |
+
- Concat:
|
58 |
+
source: [-1, N4]
|
59 |
+
- RepNCSPELAN:
|
60 |
+
args: {out_channels: 360, part_channels: 360}
|
61 |
+
tags: P4
|
62 |
+
|
63 |
+
- AConv:
|
64 |
+
args: {out_channels: 240}
|
65 |
+
- Concat:
|
66 |
+
source: [-1, N3]
|
67 |
+
- RepNCSPELAN:
|
68 |
+
args: {out_channels: 480, part_channels: 480}
|
69 |
+
tags: P5
|
70 |
+
|
71 |
+
detection:
|
72 |
+
- MultiheadDetection:
|
73 |
+
source: [P3, P4, P5]
|
74 |
+
tags: Main
|
75 |
+
args:
|
76 |
+
reg_max: ${model.anchor.reg_max}
|
77 |
+
output: True
|
78 |
+
|
79 |
+
auxiliary:
|
80 |
+
- CBLinear:
|
81 |
+
source: B3
|
82 |
+
args: {out_channels: [240]}
|
83 |
+
tags: R3
|
84 |
+
- CBLinear:
|
85 |
+
source: B4
|
86 |
+
args: {out_channels: [240, 360]}
|
87 |
+
tags: R4
|
88 |
+
- CBLinear:
|
89 |
+
source: B5
|
90 |
+
args: {out_channels: [240, 360, 480]}
|
91 |
+
tags: R5
|
92 |
+
|
93 |
+
- Conv:
|
94 |
+
args: {out_channels: 32, kernel_size: 3, stride: 2}
|
95 |
+
source: 0
|
96 |
+
- Conv:
|
97 |
+
args: {out_channels: 64, kernel_size: 3, stride: 2}
|
98 |
+
- RepNCSPELAN:
|
99 |
+
args: {out_channels: 128, part_channels: 128}
|
100 |
+
|
101 |
+
- AConv:
|
102 |
+
args: {out_channels: 240}
|
103 |
+
- CBFuse:
|
104 |
+
source: [R3, R4, R5, -1]
|
105 |
+
args: {index: [0, 0, 0]}
|
106 |
+
- RepNCSPELAN:
|
107 |
+
args: {out_channels: 240, part_channels: 240}
|
108 |
+
tags: A3
|
109 |
+
|
110 |
+
- AConv:
|
111 |
+
args: {out_channels: 360}
|
112 |
+
- CBFuse:
|
113 |
+
source: [R4, R5, -1]
|
114 |
+
args: {index: [1, 1]}
|
115 |
+
- RepNCSPELAN:
|
116 |
+
args: {out_channels: 360, part_channels: 360}
|
117 |
+
tags: A4
|
118 |
+
|
119 |
+
- AConv:
|
120 |
+
args: {out_channels: 480}
|
121 |
+
- CBFuse:
|
122 |
+
source: [R5, -1]
|
123 |
+
args: {index: [2]}
|
124 |
+
- RepNCSPELAN:
|
125 |
+
args: {out_channels: 480, part_channels: 480}
|
126 |
+
tags: A5
|
127 |
+
|
128 |
+
- MultiheadDetection:
|
129 |
+
source: [A3, A4, A5]
|
130 |
+
tags: AUX
|
131 |
+
args:
|
132 |
+
reg_max: ${model.anchor.reg_max}
|
133 |
+
output: True
|
yolo/config/model/v9-s.yaml
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
anchor:
|
2 |
+
reg_max: 16
|
3 |
+
|
4 |
+
model:
|
5 |
+
backbone:
|
6 |
+
- Conv:
|
7 |
+
args: {out_channels: 32, kernel_size: 3, stride: 2}
|
8 |
+
source: 0
|
9 |
+
- Conv:
|
10 |
+
args: {out_channels: 64, kernel_size: 3, stride: 2}
|
11 |
+
- ELAN:
|
12 |
+
args: {out_channels: 64, part_channels: 64}
|
13 |
+
|
14 |
+
- AConv:
|
15 |
+
args: {out_channels: 128}
|
16 |
+
- RepNCSPELAN:
|
17 |
+
args:
|
18 |
+
out_channels: 128
|
19 |
+
part_channels: 128
|
20 |
+
csp_args: {repeat_num: 3}
|
21 |
+
tags: B3 # 18
|
22 |
+
|
23 |
+
- AConv:
|
24 |
+
args: {out_channels: 192}
|
25 |
+
- RepNCSPELAN:
|
26 |
+
args:
|
27 |
+
out_channels: 192
|
28 |
+
part_channels: 192
|
29 |
+
csp_args: {repeat_num: 3}
|
30 |
+
tags: B4
|
31 |
+
|
32 |
+
- AConv:
|
33 |
+
args: {out_channels: 256}
|
34 |
+
- RepNCSPELAN:
|
35 |
+
args:
|
36 |
+
out_channels: 256
|
37 |
+
part_channels: 256
|
38 |
+
csp_args: {repeat_num: 3}
|
39 |
+
tags: B5
|
40 |
+
|
41 |
+
neck:
|
42 |
+
- SPPELAN:
|
43 |
+
args: {out_channels: 256}
|
44 |
+
tags: N3
|
45 |
+
|
46 |
+
- UpSample:
|
47 |
+
args: {scale_factor: 2, mode: nearest}
|
48 |
+
- Concat:
|
49 |
+
source: [-1, B4]
|
50 |
+
- RepNCSPELAN:
|
51 |
+
args:
|
52 |
+
out_channels: 192
|
53 |
+
part_channels: 192
|
54 |
+
csp_args: {repeat_num: 3}
|
55 |
+
tags: N4
|
56 |
+
|
57 |
+
- UpSample:
|
58 |
+
args: {scale_factor: 2, mode: nearest}
|
59 |
+
- Concat:
|
60 |
+
source: [-1, B3]
|
61 |
+
|
62 |
+
- RepNCSPELAN:
|
63 |
+
args:
|
64 |
+
out_channels: 128
|
65 |
+
part_channels: 128
|
66 |
+
csp_args: {repeat_num: 3}
|
67 |
+
tags: P3
|
68 |
+
- AConv:
|
69 |
+
args: {out_channels: 96}
|
70 |
+
- Concat:
|
71 |
+
source: [-1, N4]
|
72 |
+
|
73 |
+
- RepNCSPELAN:
|
74 |
+
args:
|
75 |
+
out_channels: 192
|
76 |
+
part_channels: 192
|
77 |
+
csp_args: {repeat_num: 3}
|
78 |
+
tags: P4
|
79 |
+
- AConv:
|
80 |
+
args: {out_channels: 128}
|
81 |
+
- Concat:
|
82 |
+
source: [-1, N3]
|
83 |
+
|
84 |
+
- RepNCSPELAN:
|
85 |
+
args:
|
86 |
+
out_channels: 256
|
87 |
+
part_channels: 256
|
88 |
+
csp_args: {repeat_num: 3}
|
89 |
+
tags: P5
|
90 |
+
|
91 |
+
detection:
|
92 |
+
- MultiheadDetection:
|
93 |
+
source: [P3, P4, P5]
|
94 |
+
tags: Main
|
95 |
+
args:
|
96 |
+
reg_max: ${model.anchor.reg_max}
|
97 |
+
output: True
|
98 |
+
|
99 |
+
head:
|
100 |
+
- SPPELAN:
|
101 |
+
source: B5
|
102 |
+
args: {out_channels: 256}
|
103 |
+
tags: A5
|
104 |
+
|
105 |
+
- UpSample:
|
106 |
+
args: {scale_factor: 2, mode: nearest}
|
107 |
+
- Concat:
|
108 |
+
source: [-1, B4]
|
109 |
+
|
110 |
+
- RepNCSPELAN:
|
111 |
+
args:
|
112 |
+
out_channels: 192
|
113 |
+
part_channels: 192
|
114 |
+
csp_args: {repeat_num: 3}
|
115 |
+
tags: A4
|
116 |
+
|
117 |
+
- UpSample:
|
118 |
+
args: {scale_factor: 2, mode: nearest}
|
119 |
+
- Concat:
|
120 |
+
source: [-1, B3]
|
121 |
+
|
122 |
+
- RepNCSPELAN:
|
123 |
+
args:
|
124 |
+
out_channels: 128
|
125 |
+
part_channels: 128
|
126 |
+
csp_args: {repeat_num: 3}
|
127 |
+
tags: A3
|
128 |
+
|
129 |
+
- MultiheadDetection:
|
130 |
+
source: [A3, A4, A5]
|
131 |
+
tags: AUX
|
132 |
+
args:
|
133 |
+
reg_max: ${model.anchor.reg_max}
|
134 |
+
output: True
|
yolo/model/module.py
CHANGED
@@ -192,6 +192,36 @@ class RepNCSP(nn.Module):
|
|
192 |
return self.conv3(torch.cat((x1, x2), dim=1))
|
193 |
|
194 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
class RepNCSPELAN(nn.Module):
|
196 |
"""RepNCSPELAN block combining RepNCSP blocks with ELAN structure."""
|
197 |
|
@@ -230,6 +260,21 @@ class RepNCSPELAN(nn.Module):
|
|
230 |
return x5
|
231 |
|
232 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
233 |
class ADown(nn.Module):
|
234 |
"""Downsampling module combining average and max pooling with convolution for feature reduction."""
|
235 |
|
@@ -498,26 +543,6 @@ class CSPDark(nn.Module):
|
|
498 |
return self.cv2(torch.cat((self.cb(y[0]), y[1]), 1))
|
499 |
|
500 |
|
501 |
-
# ELAN
|
502 |
-
class ELAN(nn.Module):
|
503 |
-
# ELAN
|
504 |
-
def __init__(self, in_channels, out_channels, med_channels, elan_repeat=2, cb_repeat=2, ratio=1.0):
|
505 |
-
|
506 |
-
super().__init__()
|
507 |
-
|
508 |
-
h_channels = med_channels // 2
|
509 |
-
self.cv1 = Conv(in_channels, med_channels, 1, 1)
|
510 |
-
self.cb = nn.ModuleList(ConvBlock(h_channels, repeat=cb_repeat, ratio=ratio) for _ in range(elan_repeat))
|
511 |
-
self.cv2 = Conv((2 + elan_repeat) * h_channels, out_channels, 1, 1)
|
512 |
-
|
513 |
-
def forward(self, x):
|
514 |
-
|
515 |
-
y = list(self.cv1(x).chunk(2, 1))
|
516 |
-
y.extend((m(y[-1])) for m in self.cb)
|
517 |
-
|
518 |
-
return self.cv2(torch.cat(y, 1))
|
519 |
-
|
520 |
-
|
521 |
class CSPELAN(nn.Module):
|
522 |
# ELAN
|
523 |
def __init__(self, in_channels, out_channels, med_channels, elan_repeat=2, cb_repeat=2, ratio=1.0):
|
|
|
192 |
return self.conv3(torch.cat((x1, x2), dim=1))
|
193 |
|
194 |
|
195 |
+
class ELAN(nn.Module):
|
196 |
+
"""ELAN structure."""
|
197 |
+
|
198 |
+
def __init__(
|
199 |
+
self,
|
200 |
+
in_channels: int,
|
201 |
+
out_channels: int,
|
202 |
+
part_channels: int,
|
203 |
+
*,
|
204 |
+
process_channels: Optional[int] = None,
|
205 |
+
**kwargs,
|
206 |
+
):
|
207 |
+
super().__init__()
|
208 |
+
|
209 |
+
if process_channels is None:
|
210 |
+
process_channels = part_channels // 2
|
211 |
+
|
212 |
+
self.conv1 = Conv(in_channels, part_channels, 1, **kwargs)
|
213 |
+
self.conv2 = Conv(part_channels // 2, process_channels, 3, padding=1, **kwargs)
|
214 |
+
self.conv3 = Conv(process_channels, process_channels, 3, padding=1, **kwargs)
|
215 |
+
self.conv4 = Conv(part_channels + 2 * process_channels, out_channels, 1, **kwargs)
|
216 |
+
|
217 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
218 |
+
x1, x2 = self.conv1(x).chunk(2, 1)
|
219 |
+
x3 = self.conv2(x2)
|
220 |
+
x4 = self.conv3(x3)
|
221 |
+
x5 = self.conv4(torch.cat([x1, x2, x3, x4], dim=1))
|
222 |
+
return x5
|
223 |
+
|
224 |
+
|
225 |
class RepNCSPELAN(nn.Module):
|
226 |
"""RepNCSPELAN block combining RepNCSP blocks with ELAN structure."""
|
227 |
|
|
|
260 |
return x5
|
261 |
|
262 |
|
263 |
+
class AConv(nn.Module):
|
264 |
+
"""Downsampling module combining average and max pooling with convolution for feature reduction."""
|
265 |
+
|
266 |
+
def __init__(self, in_channels: int, out_channels: int):
|
267 |
+
super().__init__()
|
268 |
+
mid_layer = {"kernel_size": 3, "stride": 2}
|
269 |
+
self.avg_pool = Pool("avg", kernel_size=2, stride=1)
|
270 |
+
self.conv = Conv(in_channels, out_channels, **mid_layer)
|
271 |
+
|
272 |
+
def forward(self, x: Tensor) -> Tensor:
|
273 |
+
x = self.avg_pool(x)
|
274 |
+
x = self.conv(x)
|
275 |
+
return x
|
276 |
+
|
277 |
+
|
278 |
class ADown(nn.Module):
|
279 |
"""Downsampling module combining average and max pooling with convolution for feature reduction."""
|
280 |
|
|
|
543 |
return self.cv2(torch.cat((self.cb(y[0]), y[1]), 1))
|
544 |
|
545 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
546 |
class CSPELAN(nn.Module):
|
547 |
# ELAN
|
548 |
def __init__(self, in_channels, out_channels, med_channels, elan_repeat=2, cb_repeat=2, ratio=1.0):
|