henry000 commited on
Commit
d5675e8
Β·
1 Parent(s): fa09d11

πŸ“ [Update] README, with more run code example

Browse files
Files changed (2) hide show
  1. README.md +17 -7
  2. docs/HOWTO.md +24 -0
README.md CHANGED
@@ -1,14 +1,14 @@
1
  # YOLO: Official Implementation of YOLOv9, YOLOv7
2
 
3
  ![GitHub License](https://img.shields.io/github/license/WongKinYiu/YOLO)
4
- ![WIP](https://img.shields.io/badge/status-WIP-orange)
5
  [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/henry000/YOLO)
6
- > [!IMPORTANT]
 
7
  > This project is currently a Work In Progress and may undergo significant changes. It is not recommended for use in production environments until further notice. Please check back regularly for updates.
8
  >
9
  > Use of this code is at your own risk and discretion. It is advisable to consult with the project owner before deploying or integrating into any critical systems.
10
 
11
- Welcome to the official implementation of YOLOv7 and YOLOv9. This repository will contains the complete codebase, pre-trained models, and detailed instructions for training and deploying YOLOv9.
12
 
13
  ## TL;DR
14
  - This is the official YOLO model implementation with an MIT License.
@@ -65,7 +65,8 @@ To train YOLO on your dataset:
65
  1. Modify the configuration file `data/config.yaml` to point to your dataset.
66
  2. Run the training script:
67
  ```shell
68
- python yolo/lazy.py task=train task.data.batch_size=8 model=v9-c
 
69
  ```
70
 
71
  ### Transfer Learning
@@ -77,15 +78,24 @@ python yolo/lazy.py task=train task.data.batch_size=8 model=v9-c dataset={datase
77
  ### Inference
78
  To evaluate the model performance, use:
79
  ```shell
80
- python yolo/lazy.py task=inference weight=weights/v9-c.pt model=v9-c task.fast_inference=deploy # use deploy weight
81
  python yolo/lazy.py task=inference # if cloned from GitHub
 
 
 
 
 
 
 
 
82
  yolo task=inference task.data.source={Any} # if pip installed
83
  ```
84
 
85
- ### Validation [WIP]
86
  To validate the model performance, use:
87
  ```shell
88
- # Work In Progress...
 
 
89
  ```
90
 
91
  ## Contributing
 
1
  # YOLO: Official Implementation of YOLOv9, YOLOv7
2
 
3
  ![GitHub License](https://img.shields.io/github/license/WongKinYiu/YOLO)
 
4
  [![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/henry000/YOLO)
5
+ <!-- ![WIP](https://img.shields.io/badge/status-WIP-orange) -->
6
+ <!-- > [!IMPORTANT]
7
  > This project is currently a Work In Progress and may undergo significant changes. It is not recommended for use in production environments until further notice. Please check back regularly for updates.
8
  >
9
  > Use of this code is at your own risk and discretion. It is advisable to consult with the project owner before deploying or integrating into any critical systems.
10
 
11
+ Welcome to the official implementation of YOLOv7 and YOLOv9. This repository will contains the complete codebase, pre-trained models, and detailed instructions for training and deploying YOLOv9. -->
12
 
13
  ## TL;DR
14
  - This is the official YOLO model implementation with an MIT License.
 
65
  1. Modify the configuration file `data/config.yaml` to point to your dataset.
66
  2. Run the training script:
67
  ```shell
68
+ python yolo/lazy.py dataset=dev use_wandb=True
69
+ python yolo/lazy.py task.data.batch_size=8 model=v9-c # or more args
70
  ```
71
 
72
  ### Transfer Learning
 
78
  ### Inference
79
  To evaluate the model performance, use:
80
  ```shell
 
81
  python yolo/lazy.py task=inference # if cloned from GitHub
82
+ python yolo/lazy.py task=inference \
83
+ name=AnyNameYouWant \ # AnyNameYouWant
84
+ device=cpu \ # hardware cuda, cpu, mps
85
+ model=v9-s \ # model version: v9-c, m, s
86
+ task.nms.min_confidence=0.1 \ # nms config
87
+ task.fast_inference=onnx \ # onnx, trt, deploy
88
+ task.data.source=data/toy/images/train \ # path to file, dir, webcam
89
+ +quite=True \ # Quite Output
90
  yolo task=inference task.data.source={Any} # if pip installed
91
  ```
92
 
93
+ ### Validation
94
  To validate the model performance, use:
95
  ```shell
96
+ python yolo/lazy.py task=validation
97
+ # or
98
+ python yolo/lazy.py task=validation dataset=toy
99
  ```
100
 
101
  ## Contributing
docs/HOWTO.md CHANGED
@@ -2,6 +2,30 @@
2
 
3
  To facilitate easy customization of the YOLO model, we've structured the codebase to allow for changes through configuration files and minimal code adjustments. This guide will walk you through the steps to customize various components of the model including the architecture, blocks, data loaders, and loss functions.
4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  ## Custom Model Architecture
6
 
7
  You can change the model architecture simply by modifying the YAML configuration file. Here's how:
 
2
 
3
  To facilitate easy customization of the YOLO model, we've structured the codebase to allow for changes through configuration files and minimal code adjustments. This guide will walk you through the steps to customize various components of the model including the architecture, blocks, data loaders, and loss functions.
4
 
5
+ ## Examples
6
+
7
+ ```shell
8
+ # Train
9
+ python yolo/lazy.py dataset=dev use_wandb=True
10
+
11
+ # Validate
12
+ python yolo/lazy.py task=validation
13
+ python yolo/lazy.py task=validation model=v9-s
14
+ python yolo/lazy.py task=validation dataset=toy
15
+ python yolo/lazy.py task=validation dataset=toy name=validation
16
+
17
+ # Inference
18
+ python yolo/lazy.py task=inference
19
+ python yolo/lazy.py task=inference device=cpu
20
+ python yolo/lazy.py task=inference +quite=True
21
+ python yolo/lazy.py task=inference name=AnyNameYouWant
22
+ python yolo/lazy.py task=inference image_size=\[480,640]
23
+ python yolo/lazy.py task=inference task.nms.min_confidence=0.1
24
+ python yolo/lazy.py task=inference task.fast_inference=deploy
25
+ python yolo/lazy.py task=inference task.fast_inference=onnx device=cpu
26
+ python yolo/lazy.py task=inference task.data.source=data/toy/images/train
27
+ ```
28
+
29
  ## Custom Model Architecture
30
 
31
  You can change the model architecture simply by modifying the YAML configuration file. Here's how: