🔥 [Remove] stream inference mode
Browse files- yolo/tools/solver.py +0 -12
yolo/tools/solver.py
CHANGED
@@ -1,8 +1,5 @@
|
|
1 |
-
import time
|
2 |
from pathlib import Path
|
3 |
|
4 |
-
import cv2
|
5 |
-
import numpy as np
|
6 |
from lightning import LightningModule
|
7 |
from torchmetrics.detection import MeanAveragePrecision
|
8 |
|
@@ -139,15 +136,6 @@ class InferenceModel(BaseModel):
|
|
139 |
self._save_image(img, batch_idx)
|
140 |
return img, fps
|
141 |
|
142 |
-
def _display_stream(self, img):
|
143 |
-
img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
|
144 |
-
fps = 1 / (time.time() - self.trainer.current_epoch_start_time)
|
145 |
-
cv2.putText(img, f"FPS: {fps:.2f}", (0, 15), 0, 0.5, (100, 255, 0), 1, cv2.LINE_AA)
|
146 |
-
cv2.imshow("Prediction", img)
|
147 |
-
if cv2.waitKey(1) & 0xFF == ord("q"):
|
148 |
-
self.trainer.should_stop = True
|
149 |
-
return fps
|
150 |
-
|
151 |
def _save_image(self, img, batch_idx):
|
152 |
save_image_path = Path(self.trainer.default_root_dir) / f"frame{batch_idx:03d}.png"
|
153 |
img.save(save_image_path)
|
|
|
|
|
1 |
from pathlib import Path
|
2 |
|
|
|
|
|
3 |
from lightning import LightningModule
|
4 |
from torchmetrics.detection import MeanAveragePrecision
|
5 |
|
|
|
136 |
self._save_image(img, batch_idx)
|
137 |
return img, fps
|
138 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
def _save_image(self, img, batch_idx):
|
140 |
save_image_path = Path(self.trainer.default_root_dir) / f"frame{batch_idx:03d}.png"
|
141 |
img.save(save_image_path)
|