henry000 commited on
Commit
db5f0f5
Β·
1 Parent(s): 936317c

πŸ“ [Update] README and PR template! update examples

Browse files
Files changed (3) hide show
  1. .github/PULL_REQUEST_TEMPLATE.md +24 -0
  2. README.md +41 -31
  3. pyproject.toml +9 -0
.github/PULL_REQUEST_TEMPLATE.md ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Description
2
+
3
+ [Please include a summary of the changes and the related issue. (Just overwrite this session directly)]
4
+
5
+ ## Type of change
6
+
7
+ Please delete options that are not relevant.
8
+
9
+ - [ ] Bug fix (non-breaking change which fixes an issue)
10
+ - [ ] New feature (non-breaking change which adds functionality)
11
+ - [ ] Breaking change (fix or feature that would cause existing functionality to not work as expected)
12
+ - [ ] This change requires a documentation update
13
+
14
+ ## Checklist:
15
+
16
+ - [ ] The code follows the Python style guide.
17
+ - [ ] Code and files are well organized.
18
+ - [ ] All tests pass.
19
+ - [ ] New code is covered by tests.
20
+ - [ ] [Optional] We would be very happy if gitmoji :technologist: could be used to assist the commit message :speech_balloon:!
21
+
22
+ ## Additional Information
23
+
24
+ Add any other information about the PR here.
README.md CHANGED
@@ -6,17 +6,19 @@
6
  >
7
  > Use of this code is at your own risk and discretion. It is advisable to consult with the project owner before deploying or integrating into any critical systems.
8
 
9
- Welcome to the official implementation of the YOLOv7 and YOLOv9. This repository will contains the complete codebase, pre-trained models, and detailed instructions for training and deploying YOLOv9.
10
 
11
  ## TL;DR
12
- - Official YOLOv9 model implementation.
13
- - Features real-time detection with state-of-the-art accuracy.
14
- <!-- - Includes pre-trained models and training scripts. -->
15
- - Quick train: `python examples/example_train.py`
 
 
16
 
17
  ## Introduction
18
  - [**YOLOv9**: Learning What You Want to Learn Using Programmable Gradient Information](https://arxiv.org/abs/2402.13616)
19
- - [**YOLOv7**: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors](https://arxiv.org/abs/2207.02696)
20
 
21
  ## Installation
22
  To get started with YOLOv9, clone this repository and install the required dependencies:
@@ -26,43 +28,51 @@ cd yolov9mit
26
  pip install -r requirements.txt
27
  ```
28
 
29
- <!--
30
- ```
31
- pip install git+https://github.com/WongKinYiu/yolov9mit.git
32
- ```
33
- -->
34
-
35
- <!-- ### Quick Start
36
- Run YOLOv9 on a pre-trained model with:
37
-
38
- ```shell
39
- python examples/example_train.py hyper.data.batch_size=8
40
- ``` -->
41
-
42
- <!-- ## Model Zoo[WIP]
43
- Find pre-trained models with benchmarks on various datasets in the [Model Zoo](docs/MODELS). -->
44
 
45
  ## Training
46
- For training YOLOv9 on your dataset:
47
-
48
- Modify the configuration file data/config.yaml to point to your dataset.
49
- Run the training script:
50
 
 
 
51
  ```shell
52
- python examples/example_train.py hyper.data.batch_size=8 model=v9-c
53
  ```
54
 
55
- More customization details, or ways to modify the model can be found [HOWTO](docs/HOWTO).
 
 
 
 
56
 
57
- ## Evaluation [WIP]
58
- Evaluate the model performance using:
 
 
 
 
59
 
 
 
60
  ```shell
61
- python examples/examples_evaluate.py weights=v9-c.pt
62
  ```
63
 
64
  ## Contributing
65
- Contributions to the YOLOv9 project are welcome! See [CONTRIBUTING](docs/CONTRIBUTING.md) for how to help out.
66
 
67
  ## Star History
68
  [![Star History Chart](https://api.star-history.com/svg?repos=WongKinYiu/yolov9mit&type=Date)](https://star-history.com/#WongKinYiu/yolov9mit&Date)
 
6
  >
7
  > Use of this code is at your own risk and discretion. It is advisable to consult with the project owner before deploying or integrating into any critical systems.
8
 
9
+ Welcome to the official implementation of YOLOv7 and YOLOv9. This repository will contains the complete codebase, pre-trained models, and detailed instructions for training and deploying YOLOv9.
10
 
11
  ## TL;DR
12
+ - This is the official YOLO model implementation with an MIT License.
13
+ - For quick deployment: you can enter directly in the terminal:
14
+ ```shell
15
+ $pip install git+https://github.com/WongKinYiu/yolov9mit.git
16
+ $yolo task=inference task.source=0 # source could be a single file, video, image folder, webcam ID
17
+ ```
18
 
19
  ## Introduction
20
  - [**YOLOv9**: Learning What You Want to Learn Using Programmable Gradient Information](https://arxiv.org/abs/2402.13616)
21
+ - [**YOLOv7**: Trainable Bag-of-Freebies Sets New State-of-the-Art for Real-Time Object Detectors](https://arxiv.org/abs/2207.02696)
22
 
23
  ## Installation
24
  To get started with YOLOv9, clone this repository and install the required dependencies:
 
28
  pip install -r requirements.txt
29
  ```
30
 
31
+ ## Features
32
+ - [x] Autodownload weights/datasets
33
+ - [x] Pip installable
34
+ - [x] Support for devices:
35
+ - [x] CUDA
36
+ - [x] MPS (PyTorch 2.3+)
37
+ - [x] CPU
38
+ - [x] Task:
39
+ - [x] Training
40
+ - [x] Inference
41
+ - [x] Validation
42
+
43
+ ## Task
44
+ These are simple examples. For more customization details, please refer to [Notebooks](examples) and lower-level modifications **[HOWTO](docs/HOWTO)**.
 
45
 
46
  ## Training
47
+ To train YOLOv9 on your dataset:
 
 
 
48
 
49
+ 1. Modify the configuration file `data/config.yaml` to point to your dataset.
50
+ 2. Run the training script:
51
  ```shell
52
+ python lazy.py task=train task.batch_size=8 model=v9-c
53
  ```
54
 
55
+ ### Transfer Learning
56
+ To perform transfer learning with YOLOv9:
57
+ ```shell
58
+ python lazy.py task=train task.batch_size=8 model=v9-c task.dataset={dataset_config}
59
+ ```
60
 
61
+ ### Inference
62
+ To evaluate the model performance, use:
63
+ ```shell
64
+ python lazy.py weights=v9-c.pt # if cloned from GitHub
65
+ yolo task=inference task.source={Any} # if pip installed
66
+ ```
67
 
68
+ ### Validation [WIP]
69
+ To validate the model performance, use:
70
  ```shell
71
+ # Work In Progress...
72
  ```
73
 
74
  ## Contributing
75
+ Contributions to the YOLOv9 project are welcome! See [CONTRIBUTING](docs/CONTRIBUTING.md) for guidelines on how to contribute.
76
 
77
  ## Star History
78
  [![Star History Chart](https://api.star-history.com/svg?repos=WongKinYiu/yolov9mit&type=Date)](https://star-history.com/#WongKinYiu/yolov9mit&Date)
pyproject.toml CHANGED
@@ -2,6 +2,15 @@
2
  name = "yolo"
3
  version = "0.1.0"
4
  dynamic = ["dependencies"]
 
 
 
 
 
 
 
 
 
5
 
6
  [tool.setuptools.dynamic]
7
  dependencies = {file = ["requirements.txt"]}
 
2
  name = "yolo"
3
  version = "0.1.0"
4
  dynamic = ["dependencies"]
5
+ description = "Official Implementation of YOLO"
6
+ authors = [
7
+ { name = "Hao-Tang, Tsui", email = "[email protected]" },
8
+ ]
9
+ readme = "README.md"
10
+ license = { file = "LICENSE" }
11
+ requires-python = ">=3.6"
12
+ keywords = ["yolo", "object detection", "computer vision"]
13
+
14
 
15
  [tool.setuptools.dynamic]
16
  dependencies = {file = ["requirements.txt"]}