✨ [Add] json can be directly read by dataloader.py
Browse filesThe default data type will be json file in this commit, and this will be further modified in later commits.
- utils/dataloader.py +103 -30
utils/dataloader.py
CHANGED
@@ -1,3 +1,6 @@
|
|
|
|
|
|
|
|
1 |
from os import listdir, path
|
2 |
from typing import List, Tuple, Union
|
3 |
|
@@ -5,14 +8,59 @@ import diskcache as dc
|
|
5 |
import hydra
|
6 |
import numpy as np
|
7 |
import torch
|
|
|
|
|
8 |
from loguru import logger
|
9 |
from PIL import Image
|
10 |
from torch.utils.data import DataLoader, Dataset
|
11 |
from torchvision.transforms import functional as TF
|
12 |
from tqdm.rich import tqdm
|
13 |
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
|
18 |
class YoloDataset(Dataset):
|
@@ -44,9 +92,7 @@ class YoloDataset(Dataset):
|
|
44 |
|
45 |
if data is None:
|
46 |
logger.info("Generating {} cache", phase_name)
|
47 |
-
|
48 |
-
labels_path = path.join(dataset_path, "label", phase_name)
|
49 |
-
data = self.filter_data(images_path, labels_path)
|
50 |
cache[phase_name] = data
|
51 |
|
52 |
cache.close()
|
@@ -54,7 +100,7 @@ class YoloDataset(Dataset):
|
|
54 |
data = cache[phase_name]
|
55 |
return data
|
56 |
|
57 |
-
def filter_data(self,
|
58 |
"""
|
59 |
Filters and collects dataset information by pairing images with their corresponding labels.
|
60 |
|
@@ -63,29 +109,58 @@ class YoloDataset(Dataset):
|
|
63 |
labels_path (str): Path to the directory containing label files.
|
64 |
|
65 |
Returns:
|
66 |
-
list: A list of tuples, each containing the path to an image file and its associated
|
67 |
"""
|
|
|
|
|
|
|
68 |
data = []
|
69 |
valid_inputs = 0
|
70 |
-
images_list = sorted(listdir(images_path))
|
71 |
-
for image_name in tqdm(images_list, desc="Filtering data"):
|
72 |
-
if not image_name.lower().endswith((".jpg", ".jpeg", ".png")):
|
73 |
-
continue
|
74 |
-
|
75 |
-
img_path = path.join(images_path, image_name)
|
76 |
-
base_name, _ = path.splitext(image_name)
|
77 |
-
label_path = path.join(labels_path, f"{base_name}.txt")
|
78 |
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
84 |
|
85 |
logger.info("Recorded {}/{} valid inputs", valid_inputs, len(images_list))
|
86 |
return data
|
87 |
|
88 |
-
def load_valid_labels(self, label_path
|
89 |
"""
|
90 |
Loads and validates bounding box data is [0, 1] from a label file.
|
91 |
|
@@ -96,15 +171,13 @@ class YoloDataset(Dataset):
|
|
96 |
torch.Tensor or None: A tensor of all valid bounding boxes if any are found; otherwise, None.
|
97 |
"""
|
98 |
bboxes = []
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
bbox = torch.tensor([cls, *valid_points.min(axis=0), *valid_points.max(axis=0)])
|
107 |
-
bboxes.append(bbox)
|
108 |
|
109 |
if bboxes:
|
110 |
return torch.stack(bboxes)
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
from itertools import chain
|
4 |
from os import listdir, path
|
5 |
from typing import List, Tuple, Union
|
6 |
|
|
|
8 |
import hydra
|
9 |
import numpy as np
|
10 |
import torch
|
11 |
+
from data_augment import Compose, HorizontalFlip, MixUp, Mosaic, VerticalFlip
|
12 |
+
from drawer import draw_bboxes
|
13 |
from loguru import logger
|
14 |
from PIL import Image
|
15 |
from torch.utils.data import DataLoader, Dataset
|
16 |
from torchvision.transforms import functional as TF
|
17 |
from tqdm.rich import tqdm
|
18 |
|
19 |
+
|
20 |
+
def find_labels_path(dataset_path, phase_name):
|
21 |
+
json_labels_path = path.join(dataset_path, "annotations", f"instances_{phase_name}.json")
|
22 |
+
|
23 |
+
txt_labels_path = path.join(dataset_path, "label", phase_name)
|
24 |
+
|
25 |
+
if path.isfile(json_labels_path):
|
26 |
+
return json_labels_path, "json"
|
27 |
+
|
28 |
+
elif path.isdir(txt_labels_path):
|
29 |
+
txt_files = [f for f in os.listdir(txt_labels_path) if f.endswith(".txt")]
|
30 |
+
if txt_files:
|
31 |
+
return txt_labels_path, "txt"
|
32 |
+
|
33 |
+
raise FileNotFoundError("No labels found in the specified dataset path and phase name.")
|
34 |
+
|
35 |
+
|
36 |
+
def load_json_labels(json_labels_path):
|
37 |
+
with open(json_labels_path, "r") as file:
|
38 |
+
data = json.load(file)
|
39 |
+
return data
|
40 |
+
|
41 |
+
|
42 |
+
def create_annotation_lookup(data):
|
43 |
+
annotation_lookup = {}
|
44 |
+
for anno in data["annotations"]:
|
45 |
+
if anno["iscrowd"] == 0: # Exclude crowd annotations
|
46 |
+
image_id = anno["image_id"]
|
47 |
+
if image_id not in annotation_lookup:
|
48 |
+
annotation_lookup[image_id] = []
|
49 |
+
annotation_lookup[image_id].append(anno)
|
50 |
+
return annotation_lookup
|
51 |
+
|
52 |
+
|
53 |
+
def process_annotations(annotations, image_id, image_dimensions):
|
54 |
+
ret_array = []
|
55 |
+
h, w = image_dimensions["height"], image_dimensions["width"]
|
56 |
+
for anno in annotations:
|
57 |
+
category_id = anno["category_id"]
|
58 |
+
flat_list = [item for sublist in anno["segmentation"] for item in sublist]
|
59 |
+
normalized_data = (np.array(flat_list).reshape(-1, 2) / [w, h]).tolist()
|
60 |
+
normalized_flat = list(chain(*normalized_data))
|
61 |
+
normalized_flat.insert(0, category_id)
|
62 |
+
ret_array.append(normalized_flat)
|
63 |
+
return ret_array
|
64 |
|
65 |
|
66 |
class YoloDataset(Dataset):
|
|
|
92 |
|
93 |
if data is None:
|
94 |
logger.info("Generating {} cache", phase_name)
|
95 |
+
data = self.filter_data(dataset_path, phase_name)
|
|
|
|
|
96 |
cache[phase_name] = data
|
97 |
|
98 |
cache.close()
|
|
|
100 |
data = cache[phase_name]
|
101 |
return data
|
102 |
|
103 |
+
def filter_data(self, dataset_path: str, phase_name: str) -> list:
|
104 |
"""
|
105 |
Filters and collects dataset information by pairing images with their corresponding labels.
|
106 |
|
|
|
109 |
labels_path (str): Path to the directory containing label files.
|
110 |
|
111 |
Returns:
|
112 |
+
list: A list of tuples, each containing the path to an image file and its associated segmentation as a tensor.
|
113 |
"""
|
114 |
+
images_path = path.join(dataset_path, "images", phase_name)
|
115 |
+
labels_path, data_type = find_labels_path(dataset_path, phase_name)
|
116 |
+
images_list = sorted(os.listdir(images_path))
|
117 |
data = []
|
118 |
valid_inputs = 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
+
if data_type == "json":
|
121 |
+
labels_data = load_json_labels(labels_path)
|
122 |
+
annotations_lookup = create_annotation_lookup(labels_data)
|
123 |
+
image_info_dict = {path.splitext(img["file_name"])[0]: img for img in labels_data["images"]}
|
124 |
+
|
125 |
+
for image_name in tqdm(images_list, desc="Filtering data"):
|
126 |
+
if not image_name.lower().endswith((".jpg", ".jpeg", ".png")):
|
127 |
+
continue
|
128 |
+
base_name, _ = path.splitext(image_name)
|
129 |
+
if base_name in image_info_dict:
|
130 |
+
image_info = image_info_dict[base_name]
|
131 |
+
annotations = annotations_lookup.get(image_info["id"], [])
|
132 |
+
if annotations:
|
133 |
+
processed_data = process_annotations(annotations, image_info["id"], image_info)
|
134 |
+
if processed_data:
|
135 |
+
img_path = path.join(images_path, image_name)
|
136 |
+
labels = self.load_valid_labels(img_path, processed_data)
|
137 |
+
if labels is not None:
|
138 |
+
data.append((img_path, labels))
|
139 |
+
valid_inputs += 1
|
140 |
+
|
141 |
+
elif data_type == "txt":
|
142 |
+
for image_name in tqdm(images_list, desc="Filtering data"):
|
143 |
+
if not image_name.lower().endswith((".jpg", ".jpeg", ".png")):
|
144 |
+
continue
|
145 |
+
img_path = path.join(images_path, image_name)
|
146 |
+
base_name, _ = path.splitext(image_name)
|
147 |
+
label_path = path.join(labels_path, f"{base_name}.txt")
|
148 |
+
|
149 |
+
if path.isfile(label_path):
|
150 |
+
seg_data_one_img = []
|
151 |
+
with open(label_path, "r") as file:
|
152 |
+
for line in file:
|
153 |
+
parts = list(map(float, line.strip().split()))
|
154 |
+
seg_data_one_img.append(parts)
|
155 |
+
labels = self.load_valid_labels(label_path, seg_data_one_img)
|
156 |
+
if labels is not None:
|
157 |
+
data.append((img_path, labels))
|
158 |
+
valid_inputs += 1
|
159 |
|
160 |
logger.info("Recorded {}/{} valid inputs", valid_inputs, len(images_list))
|
161 |
return data
|
162 |
|
163 |
+
def load_valid_labels(self, label_path, seg_data_one_img) -> Union[torch.Tensor, None]:
|
164 |
"""
|
165 |
Loads and validates bounding box data is [0, 1] from a label file.
|
166 |
|
|
|
171 |
torch.Tensor or None: A tensor of all valid bounding boxes if any are found; otherwise, None.
|
172 |
"""
|
173 |
bboxes = []
|
174 |
+
for seg_data in seg_data_one_img:
|
175 |
+
cls = seg_data[0]
|
176 |
+
points = np.array(seg_data[1:]).reshape(-1, 2)
|
177 |
+
valid_points = points[(points >= 0) & (points <= 1)].reshape(-1, 2)
|
178 |
+
if valid_points.size > 1:
|
179 |
+
bbox = torch.tensor([cls, *valid_points.min(axis=0), *valid_points.max(axis=0)])
|
180 |
+
bboxes.append(bbox)
|
|
|
|
|
181 |
|
182 |
if bboxes:
|
183 |
return torch.stack(bboxes)
|