π [Move] Tensorlize out of YoloDataset
Browse files- yolo/tools/data_loader.py +18 -14
yolo/tools/data_loader.py
CHANGED
@@ -23,6 +23,20 @@ from yolo.utils.dataset_utils import (
|
|
23 |
)
|
24 |
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
class YoloDataset(Dataset):
|
27 |
def __init__(self, data_cfg: DataConfig, dataset_cfg: DatasetConfig, phase: str = "train2017"):
|
28 |
augment_cfg = data_cfg.data_augment
|
@@ -32,19 +46,8 @@ class YoloDataset(Dataset):
|
|
32 |
transforms = [eval(aug)(prob) for aug, prob in augment_cfg.items()]
|
33 |
self.transform = AugmentationComposer(transforms, self.image_size)
|
34 |
self.transform.get_more_data = self.get_more_data
|
35 |
-
|
36 |
-
|
37 |
-
def tensorlize(self, data):
|
38 |
-
img_paths, bboxes = zip(*data)
|
39 |
-
max_box = max(bbox.size(0) for bbox in bboxes)
|
40 |
-
padded_bbox_list = []
|
41 |
-
for bbox in bboxes:
|
42 |
-
padding = torch.full((max_box, 5), -1, dtype=torch.float32)
|
43 |
-
padding[: bbox.size(0)] = bbox
|
44 |
-
padded_bbox_list.append(padding)
|
45 |
-
bboxes = torch.stack(padded_bbox_list)
|
46 |
-
img_paths = np.array(img_paths)
|
47 |
-
return img_paths, bboxes
|
48 |
|
49 |
def load_data(self, dataset_path: Path, phase_name: str):
|
50 |
"""
|
@@ -145,8 +148,9 @@ class YoloDataset(Dataset):
|
|
145 |
|
146 |
def get_data(self, idx):
|
147 |
img_path, bboxes = self.img_paths[idx], self.bboxes[idx]
|
|
|
148 |
img = Image.open(img_path).convert("RGB")
|
149 |
-
return img, bboxes, img_path
|
150 |
|
151 |
def get_more_data(self, num: int = 1):
|
152 |
indices = torch.randint(0, len(self), (num,))
|
|
|
23 |
)
|
24 |
|
25 |
|
26 |
+
def tensorlize(data):
|
27 |
+
# TODO Move Tensorlize to helper
|
28 |
+
img_paths, bboxes = zip(*data)
|
29 |
+
max_box = max(bbox.size(0) for bbox in bboxes)
|
30 |
+
padded_bbox_list = []
|
31 |
+
for bbox in bboxes:
|
32 |
+
padding = torch.full((max_box, 5), -1, dtype=torch.float32)
|
33 |
+
padding[: bbox.size(0)] = bbox
|
34 |
+
padded_bbox_list.append(padding)
|
35 |
+
bboxes = np.stack(padded_bbox_list)
|
36 |
+
img_paths = np.array(img_paths)
|
37 |
+
return img_paths, bboxes
|
38 |
+
|
39 |
+
|
40 |
class YoloDataset(Dataset):
|
41 |
def __init__(self, data_cfg: DataConfig, dataset_cfg: DatasetConfig, phase: str = "train2017"):
|
42 |
augment_cfg = data_cfg.data_augment
|
|
|
46 |
transforms = [eval(aug)(prob) for aug, prob in augment_cfg.items()]
|
47 |
self.transform = AugmentationComposer(transforms, self.image_size)
|
48 |
self.transform.get_more_data = self.get_more_data
|
49 |
+
img_paths, bboxes = tensorlize(self.load_data(Path(dataset_cfg.path), phase_name))
|
50 |
+
self.img_paths, self.bboxes = img_paths, bboxes
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
def load_data(self, dataset_path: Path, phase_name: str):
|
53 |
"""
|
|
|
148 |
|
149 |
def get_data(self, idx):
|
150 |
img_path, bboxes = self.img_paths[idx], self.bboxes[idx]
|
151 |
+
valid_mask = bboxes[:, 0] != -1
|
152 |
img = Image.open(img_path).convert("RGB")
|
153 |
+
return img, torch.from_numpy(bboxes[valid_mask]), img_path
|
154 |
|
155 |
def get_more_data(self, num: int = 1):
|
156 |
indices = torch.randint(0, len(self), (num,))
|