henry000 commited on
Commit
e802523
·
1 Parent(s): e1e7e4f

♻️ [Refactor] the code of data augment and rename

Browse files
config/data/augmentation.yaml CHANGED
@@ -1,3 +1,3 @@
1
  Mosaic: 1
2
- MixUp: 1
3
- RandomHorizontalFlip: 0.5
 
1
  Mosaic: 1
2
+ # MixUp: 1
3
+ HorizontalFlip: 0.5
tests/test_utils/test_dataaugment.py CHANGED
@@ -6,7 +6,7 @@ from PIL import Image
6
  from torchvision.transforms import functional as TF
7
 
8
  sys.path.append("./")
9
- from utils.dataargument import Compose, Mosaic, RandomHorizontalFlip
10
 
11
 
12
  def test_random_horizontal_flip():
 
6
  from torchvision.transforms import functional as TF
7
 
8
  sys.path.append("./")
9
+ from utils.data_augment import Compose, Mosaic, RandomHorizontalFlip
10
 
11
 
12
  def test_random_horizontal_flip():
utils/data_augment.py CHANGED
@@ -2,7 +2,6 @@ import numpy as np
2
  import torch
3
  from PIL import Image
4
  from torchvision.transforms import functional as TF
5
- from torchvision.transforms.functional import to_pil_image, to_tensor
6
 
7
 
8
  class Compose:
@@ -22,7 +21,7 @@ class Compose:
22
  return image, boxes
23
 
24
 
25
- class RandomHorizontalFlip:
26
  """Randomly horizontally flips the image along with the bounding boxes."""
27
 
28
  def __init__(self, prob=0.5):
@@ -35,7 +34,7 @@ class RandomHorizontalFlip:
35
  return image, boxes
36
 
37
 
38
- class RandomVerticalFlip:
39
  """Randomly vertically flips the image along with the bounding boxes."""
40
 
41
  def __init__(self, prob=0.5):
@@ -88,6 +87,7 @@ class Mosaic:
88
  all_labels.append(adjusted_boxes)
89
 
90
  all_labels = torch.cat(all_labels, dim=0)
 
91
  return mosaic_image, all_labels
92
 
93
 
@@ -116,10 +116,10 @@ class MixUp:
116
  lam = np.random.beta(self.alpha, self.alpha) if self.alpha > 0 else 0.5
117
 
118
  # Mix images
119
- image1, image2 = to_tensor(image), to_tensor(image2)
120
  mixed_image = lam * image1 + (1 - lam) * image2
121
 
122
  # Mix bounding boxes
123
  mixed_boxes = torch.cat([lam * boxes, (1 - lam) * boxes2])
124
 
125
- return to_pil_image(mixed_image), mixed_boxes
 
2
  import torch
3
  from PIL import Image
4
  from torchvision.transforms import functional as TF
 
5
 
6
 
7
  class Compose:
 
21
  return image, boxes
22
 
23
 
24
+ class HorizontalFlip:
25
  """Randomly horizontally flips the image along with the bounding boxes."""
26
 
27
  def __init__(self, prob=0.5):
 
34
  return image, boxes
35
 
36
 
37
+ class VerticalFlip:
38
  """Randomly vertically flips the image along with the bounding boxes."""
39
 
40
  def __init__(self, prob=0.5):
 
87
  all_labels.append(adjusted_boxes)
88
 
89
  all_labels = torch.cat(all_labels, dim=0)
90
+ mosaic_image = mosaic_image.resize((img_sz, img_sz))
91
  return mosaic_image, all_labels
92
 
93
 
 
116
  lam = np.random.beta(self.alpha, self.alpha) if self.alpha > 0 else 0.5
117
 
118
  # Mix images
119
+ image1, image2 = TF.to_tensor(image), TF.to_tensor(image2)
120
  mixed_image = lam * image1 + (1 - lam) * image2
121
 
122
  # Mix bounding boxes
123
  mixed_boxes = torch.cat([lam * boxes, (1 - lam) * boxes2])
124
 
125
+ return TF.to_pil_image(mixed_image), mixed_boxes