♻️ [Refactor] dataset, apply tensorlize
Browse files- yolo/tools/data_loader.py +2 -29
- yolo/utils/dataset_utils.py +14 -0
yolo/tools/data_loader.py
CHANGED
@@ -18,38 +18,11 @@ from yolo.utils.dataset_utils import (
|
|
18 |
create_image_metadata,
|
19 |
locate_label_paths,
|
20 |
scale_segmentation,
|
|
|
21 |
)
|
22 |
from yolo.utils.logger import logger
|
23 |
|
24 |
|
25 |
-
def tensorlize(data):
|
26 |
-
# TODO Move Tensorlize to helper
|
27 |
-
img_paths, bboxes = zip(*data)
|
28 |
-
max_box = max(bbox.size(0) for bbox in bboxes)
|
29 |
-
padded_bbox_list = []
|
30 |
-
for bbox in bboxes:
|
31 |
-
padding = torch.full((max_box, 5), -1, dtype=torch.float32)
|
32 |
-
padding[: bbox.size(0)] = bbox
|
33 |
-
padded_bbox_list.append(padding)
|
34 |
-
bboxes = np.stack(padded_bbox_list)
|
35 |
-
img_paths = np.array(img_paths)
|
36 |
-
return img_paths, bboxes
|
37 |
-
|
38 |
-
|
39 |
-
def tensorlize(data):
|
40 |
-
# TODO Move Tensorlize to helper
|
41 |
-
img_paths, bboxes = zip(*data)
|
42 |
-
max_box = max(bbox.size(0) for bbox in bboxes)
|
43 |
-
padded_bbox_list = []
|
44 |
-
for bbox in bboxes:
|
45 |
-
padding = torch.full((max_box, 5), -1, dtype=torch.float32)
|
46 |
-
padding[: bbox.size(0)] = bbox
|
47 |
-
padded_bbox_list.append(padding)
|
48 |
-
bboxes = np.stack(padded_bbox_list)
|
49 |
-
img_paths = np.array(img_paths)
|
50 |
-
return img_paths, bboxes
|
51 |
-
|
52 |
-
|
53 |
class YoloDataset(Dataset):
|
54 |
def __init__(self, data_cfg: DataConfig, dataset_cfg: DatasetConfig, phase: str = "train2017"):
|
55 |
augment_cfg = data_cfg.data_augment
|
@@ -160,7 +133,7 @@ class YoloDataset(Dataset):
|
|
160 |
return torch.zeros((0, 5))
|
161 |
|
162 |
def get_data(self, idx):
|
163 |
-
img_path, bboxes = self.
|
164 |
valid_mask = bboxes[:, 0] != -1
|
165 |
with Image.open(img_path) as img:
|
166 |
img = img.convert("RGB")
|
|
|
18 |
create_image_metadata,
|
19 |
locate_label_paths,
|
20 |
scale_segmentation,
|
21 |
+
tensorlize,
|
22 |
)
|
23 |
from yolo.utils.logger import logger
|
24 |
|
25 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
class YoloDataset(Dataset):
|
27 |
def __init__(self, data_cfg: DataConfig, dataset_cfg: DatasetConfig, phase: str = "train2017"):
|
28 |
augment_cfg = data_cfg.data_augment
|
|
|
133 |
return torch.zeros((0, 5))
|
134 |
|
135 |
def get_data(self, idx):
|
136 |
+
img_path, bboxes = self.img_paths[idx], self.bboxes[idx]
|
137 |
valid_mask = bboxes[:, 0] != -1
|
138 |
with Image.open(img_path) as img:
|
139 |
img = img.convert("RGB")
|
yolo/utils/dataset_utils.py
CHANGED
@@ -5,6 +5,7 @@ from pathlib import Path
|
|
5 |
from typing import Any, Dict, List, Optional, Tuple
|
6 |
|
7 |
import numpy as np
|
|
|
8 |
|
9 |
from yolo.tools.data_conversion import discretize_categories
|
10 |
from yolo.utils.logger import logger
|
@@ -111,3 +112,16 @@ def scale_segmentation(
|
|
111 |
seg_array_with_cat.append(scaled_flat_seg_data)
|
112 |
|
113 |
return seg_array_with_cat
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
from typing import Any, Dict, List, Optional, Tuple
|
6 |
|
7 |
import numpy as np
|
8 |
+
import torch
|
9 |
|
10 |
from yolo.tools.data_conversion import discretize_categories
|
11 |
from yolo.utils.logger import logger
|
|
|
112 |
seg_array_with_cat.append(scaled_flat_seg_data)
|
113 |
|
114 |
return seg_array_with_cat
|
115 |
+
|
116 |
+
|
117 |
+
def tensorlize(data):
|
118 |
+
img_paths, bboxes = zip(*data)
|
119 |
+
max_box = max(bbox.size(0) for bbox in bboxes)
|
120 |
+
padded_bbox_list = []
|
121 |
+
for bbox in bboxes:
|
122 |
+
padding = torch.full((max_box, 5), -1, dtype=torch.float32)
|
123 |
+
padding[: bbox.size(0)] = bbox
|
124 |
+
padded_bbox_list.append(padding)
|
125 |
+
bboxes = np.stack(padded_bbox_list)
|
126 |
+
img_paths = np.array(img_paths)
|
127 |
+
return img_paths, bboxes
|