henry000 commited on
Commit
fbb556e
·
1 Parent(s): f969f24

✨ [Add] Detection Head and Multiple Head class

Browse files
Files changed (1) hide show
  1. yolo/model/module.py +43 -2
yolo/model/module.py CHANGED
@@ -1,10 +1,10 @@
1
- from typing import Optional, Tuple
2
 
3
  import torch
4
  from torch import Tensor, nn
5
  from torch.nn.common_types import _size_2_t
6
 
7
- from yolo.tools.module_helper import auto_pad, get_activation
8
 
9
 
10
  class Conv(nn.Module):
@@ -99,6 +99,47 @@ class SPPELAN(nn.Module):
99
  #### -- ####
100
 
101
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
102
  # RepVGG
103
  class RepConv(nn.Module):
104
  # https://github.com/DingXiaoH/RepVGG
 
1
+ from typing import List, Optional, Tuple
2
 
3
  import torch
4
  from torch import Tensor, nn
5
  from torch.nn.common_types import _size_2_t
6
 
7
+ from yolo.tools.module_helper import auto_pad, get_activation, round_up
8
 
9
 
10
  class Conv(nn.Module):
 
99
  #### -- ####
100
 
101
 
102
+ class Detection(nn.Module):
103
+ """A single YOLO Detection head for detection models"""
104
+
105
+ def __init__(self, in_channels: int, num_classes: int, *, reg_max: int = 16, use_group: bool = True):
106
+ super().__init__()
107
+
108
+ groups = 4 if use_group else 1
109
+ anchor_channels = 4 * reg_max
110
+ # TODO: round up head[0] channels or each head?
111
+ anchor_neck = max(round_up(in_channels // 4, groups), anchor_channels, 16)
112
+ class_neck = max(in_channels, min(num_classes * 2, 128))
113
+
114
+ self.anchor_conv = nn.Sequential(
115
+ Conv(in_channels, anchor_neck, 3),
116
+ Conv(anchor_neck, anchor_neck, 3, groups=groups),
117
+ nn.Conv2d(anchor_neck, anchor_channels, 1, groups=groups),
118
+ )
119
+ self.class_conv = nn.Sequential(
120
+ Conv(in_channels, class_neck, 3), Conv(class_neck, class_neck, 3), nn.Conv2d(class_neck, num_classes, 1)
121
+ )
122
+
123
+ def forward(self, x: List[Tensor]) -> List[Tensor]:
124
+ anchor_x = self.anchor_conv(x)
125
+ class_x = self.class_conv(x)
126
+ return torch.cat([anchor_x, class_x], dim=1)
127
+
128
+
129
+ class MultiheadDetection(nn.Module):
130
+ """Mutlihead Detection module for Dual detect or Triple detect"""
131
+
132
+ def __init__(self, in_channels: List[int], num_classes: int, **head_kwargs):
133
+ super().__init__()
134
+ self.heads = nn.ModuleList(
135
+ [Detection(head_in_channels, num_classes, **head_kwargs) for head_in_channels in in_channels]
136
+ )
137
+
138
+ def forward(self, x_list: List[torch.Tensor]) -> List[torch.Tensor]:
139
+ return [head(x) for x, head in zip(x_list, self.heads)]
140
+
141
+
142
+ #### -- ####
143
  # RepVGG
144
  class RepConv(nn.Module):
145
  # https://github.com/DingXiaoH/RepVGG