import hydra import torch from loguru import logger from config.config import Config from model.yolo import get_model from tools.log_helper import custom_logger from tools.trainer import Trainer from utils.dataloader import get_dataloader from utils.get_dataset import prepare_dataset @hydra.main(config_path="config", config_name="config", version_base=None) def main(cfg: Config): if cfg.download.auto: prepare_dataset(cfg.download) dataloader = get_dataloader(cfg) model = get_model(cfg.model) # TODO: get_device or rank, for DDP mode device = torch.device("cuda" if torch.cuda.is_available() else "cpu") trainer = Trainer(model, cfg.hyper.train, device) trainer.train(dataloader, 10) if __name__ == "__main__": custom_logger() main()