from typing import Any, Dict, List, Optional, Tuple import torch import torch.nn.functional as F from einops import rearrange from torch import Tensor, nn from torch.nn.common_types import _size_2_t from yolo.utils.logger import logger from yolo.utils.module_utils import auto_pad, create_activation_function, round_up # ----------- Basic Class ----------- # class Conv(nn.Module): """A basic convolutional block that includes convolution, batch normalization, and activation.""" def __init__( self, in_channels: int, out_channels: int, kernel_size: _size_2_t, *, activation: Optional[str] = "SiLU", **kwargs, ): super().__init__() kwargs.setdefault("padding", auto_pad(kernel_size, **kwargs)) self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, bias=False, **kwargs) self.bn = nn.BatchNorm2d(out_channels, eps=1e-3, momentum=3e-2) self.act = create_activation_function(activation) def forward(self, x: Tensor) -> Tensor: return self.act(self.bn(self.conv(x))) class Pool(nn.Module): """A generic pooling block supporting 'max' and 'avg' pooling methods.""" def __init__(self, method: str = "max", kernel_size: _size_2_t = 2, **kwargs): super().__init__() kwargs.setdefault("padding", auto_pad(kernel_size, **kwargs)) pool_classes = {"max": nn.MaxPool2d, "avg": nn.AvgPool2d} self.pool = pool_classes[method.lower()](kernel_size=kernel_size, **kwargs) def forward(self, x: Tensor) -> Tensor: return self.pool(x) class Concat(nn.Module): def __init__(self, dim=1): super(Concat, self).__init__() self.dim = dim def forward(self, x): return torch.cat(x, self.dim) # ----------- Detection Class ----------- # class Detection(nn.Module): """A single YOLO Detection head for detection models""" def __init__(self, in_channels: Tuple[int], num_classes: int, *, reg_max: int = 16, use_group: bool = True): super().__init__() groups = 4 if use_group else 1 anchor_channels = 4 * reg_max first_neck, in_channels = in_channels anchor_neck = max(round_up(first_neck // 4, groups), anchor_channels, reg_max) class_neck = max(first_neck, min(num_classes * 2, 128)) self.anchor_conv = nn.Sequential( Conv(in_channels, anchor_neck, 3), Conv(anchor_neck, anchor_neck, 3, groups=groups), nn.Conv2d(anchor_neck, anchor_channels, 1, groups=groups), ) self.class_conv = nn.Sequential( Conv(in_channels, class_neck, 3), Conv(class_neck, class_neck, 3), nn.Conv2d(class_neck, num_classes, 1) ) self.anc2vec = Anchor2Vec(reg_max=reg_max) self.anchor_conv[-1].bias.data.fill_(1.0) self.class_conv[-1].bias.data.fill_(-10) # TODO: math.log(5 * 4 ** idx / 80 ** 3) def forward(self, x: Tensor) -> Tuple[Tensor]: anchor_x = self.anchor_conv(x) class_x = self.class_conv(x) anchor_x, vector_x = self.anc2vec(anchor_x) return class_x, anchor_x, vector_x class IDetection(nn.Module): def __init__(self, in_channels: Tuple[int], num_classes: int, *args, anchor_num: int = 3, **kwargs): super().__init__() if isinstance(in_channels, tuple): in_channels = in_channels[1] out_channel = num_classes + 5 out_channels = out_channel * anchor_num self.head_conv = nn.Conv2d(in_channels, out_channels, 1) self.implicit_a = ImplicitA(in_channels) self.implicit_m = ImplicitM(out_channels) def forward(self, x): x = self.implicit_a(x) x = self.head_conv(x) x = self.implicit_m(x) return x class MultiheadDetection(nn.Module): """Mutlihead Detection module for Dual detect or Triple detect""" def __init__(self, in_channels: List[int], num_classes: int, **head_kwargs): super().__init__() DetectionHead = Detection if head_kwargs.pop("version", None) == "v7": DetectionHead = IDetection self.heads = nn.ModuleList( [DetectionHead((in_channels[0], in_channel), num_classes, **head_kwargs) for in_channel in in_channels] ) def forward(self, x_list: List[torch.Tensor]) -> List[torch.Tensor]: return [head(x) for x, head in zip(x_list, self.heads)] # ----------- Segmentation Class ----------- # class Segmentation(nn.Module): def __init__(self, in_channels: Tuple[int], num_maskes: int): super().__init__() first_neck, in_channels = in_channels mask_neck = max(first_neck // 4, num_maskes) self.mask_conv = nn.Sequential( Conv(in_channels, mask_neck, 3), Conv(mask_neck, mask_neck, 3), nn.Conv2d(mask_neck, num_maskes, 1) ) def forward(self, x: Tensor) -> Tuple[Tensor]: x = self.mask_conv(x) return x class MultiheadSegmentation(nn.Module): """Mutlihead Segmentation module for Dual segment or Triple segment""" def __init__(self, in_channels: List[int], num_classes: int, num_maskes: int, **head_kwargs): super().__init__() mask_channels, proto_channels = in_channels[:-1], in_channels[-1] self.detect = MultiheadDetection(mask_channels, num_classes, **head_kwargs) self.heads = nn.ModuleList( [Segmentation((in_channels[0], in_channel), num_maskes) for in_channel in mask_channels] ) self.heads.append(Conv(proto_channels, num_maskes, 1)) def forward(self, x_list: List[torch.Tensor]) -> List[torch.Tensor]: return [head(x) for x, head in zip(x_list, self.heads)] class Anchor2Vec(nn.Module): def __init__(self, reg_max: int = 16) -> None: super().__init__() reverse_reg = torch.arange(reg_max, dtype=torch.float32).view(1, reg_max, 1, 1, 1) self.anc2vec = nn.Conv3d(in_channels=reg_max, out_channels=1, kernel_size=1, bias=False) self.anc2vec.weight = nn.Parameter(reverse_reg, requires_grad=False) def forward(self, anchor_x: Tensor) -> Tensor: anchor_x = rearrange(anchor_x, "B (P R) h w -> B R P h w", P=4) vector_x = anchor_x.softmax(dim=1) vector_x = self.anc2vec(vector_x)[:, 0] return anchor_x, vector_x # ----------- Classification Class ----------- # class Classification(nn.Module): def __init__(self, in_channel: int, num_classes: int, *, neck_channels=1024, **head_args): super().__init__() self.conv = Conv(in_channel, neck_channels, 1) self.pool = nn.AdaptiveAvgPool2d(1) self.head = nn.Linear(neck_channels, num_classes) def forward(self, x: Tensor) -> Tuple[Tensor]: x = self.pool(self.conv(x)) x = self.head(x.flatten(start_dim=1)) return x # ----------- Backbone Class ----------- # class RepConv(nn.Module): """A convolutional block that combines two convolution layers (kernel and point-wise).""" def __init__( self, in_channels: int, out_channels: int, kernel_size: _size_2_t = 3, *, activation: Optional[str] = "SiLU", **kwargs, ): super().__init__() self.act = create_activation_function(activation) self.conv1 = Conv(in_channels, out_channels, kernel_size, activation=False, **kwargs) self.conv2 = Conv(in_channels, out_channels, 1, activation=False, **kwargs) def forward(self, x: Tensor) -> Tensor: return self.act(self.conv1(x) + self.conv2(x)) class Bottleneck(nn.Module): """A bottleneck block with optional residual connections.""" def __init__( self, in_channels: int, out_channels: int, *, kernel_size: Tuple[int, int] = (3, 3), residual: bool = True, expand: float = 1.0, **kwargs, ): super().__init__() neck_channels = int(out_channels * expand) self.conv1 = RepConv(in_channels, neck_channels, kernel_size[0], **kwargs) self.conv2 = Conv(neck_channels, out_channels, kernel_size[1], **kwargs) self.residual = residual if residual and (in_channels != out_channels): self.residual = False logger.warning( "Residual connection disabled: in_channels ({}) != out_channels ({})", in_channels, out_channels ) def forward(self, x: torch.Tensor) -> torch.Tensor: y = self.conv2(self.conv1(x)) return x + y if self.residual else y class RepNCSP(nn.Module): """RepNCSP block with convolutions, split, and bottleneck processing.""" def __init__( self, in_channels: int, out_channels: int, kernel_size: int = 1, *, csp_expand: float = 0.5, repeat_num: int = 1, neck_args: Dict[str, Any] = {}, **kwargs, ): super().__init__() neck_channels = int(out_channels * csp_expand) self.conv1 = Conv(in_channels, neck_channels, kernel_size, **kwargs) self.conv2 = Conv(in_channels, neck_channels, kernel_size, **kwargs) self.conv3 = Conv(2 * neck_channels, out_channels, kernel_size, **kwargs) self.bottleneck = nn.Sequential( *[Bottleneck(neck_channels, neck_channels, **neck_args) for _ in range(repeat_num)] ) def forward(self, x: torch.Tensor) -> torch.Tensor: x1 = self.bottleneck(self.conv1(x)) x2 = self.conv2(x) return self.conv3(torch.cat((x1, x2), dim=1)) class ELAN(nn.Module): """ELAN structure.""" def __init__( self, in_channels: int, out_channels: int, part_channels: int, *, process_channels: Optional[int] = None, **kwargs, ): super().__init__() if process_channels is None: process_channels = part_channels // 2 self.conv1 = Conv(in_channels, part_channels, 1, **kwargs) self.conv2 = Conv(part_channels // 2, process_channels, 3, padding=1, **kwargs) self.conv3 = Conv(process_channels, process_channels, 3, padding=1, **kwargs) self.conv4 = Conv(part_channels + 2 * process_channels, out_channels, 1, **kwargs) def forward(self, x: torch.Tensor) -> torch.Tensor: x1, x2 = self.conv1(x).chunk(2, 1) x3 = self.conv2(x2) x4 = self.conv3(x3) x5 = self.conv4(torch.cat([x1, x2, x3, x4], dim=1)) return x5 class RepNCSPELAN(nn.Module): """RepNCSPELAN block combining RepNCSP blocks with ELAN structure.""" def __init__( self, in_channels: int, out_channels: int, part_channels: int, *, process_channels: Optional[int] = None, csp_args: Dict[str, Any] = {}, csp_neck_args: Dict[str, Any] = {}, **kwargs, ): super().__init__() if process_channels is None: process_channels = part_channels // 2 self.conv1 = Conv(in_channels, part_channels, 1, **kwargs) self.conv2 = nn.Sequential( RepNCSP(part_channels // 2, process_channels, neck_args=csp_neck_args, **csp_args), Conv(process_channels, process_channels, 3, padding=1, **kwargs), ) self.conv3 = nn.Sequential( RepNCSP(process_channels, process_channels, neck_args=csp_neck_args, **csp_args), Conv(process_channels, process_channels, 3, padding=1, **kwargs), ) self.conv4 = Conv(part_channels + 2 * process_channels, out_channels, 1, **kwargs) def forward(self, x: torch.Tensor) -> torch.Tensor: x1, x2 = self.conv1(x).chunk(2, 1) x3 = self.conv2(x2) x4 = self.conv3(x3) x5 = self.conv4(torch.cat([x1, x2, x3, x4], dim=1)) return x5 class AConv(nn.Module): """Downsampling module combining average and max pooling with convolution for feature reduction.""" def __init__(self, in_channels: int, out_channels: int): super().__init__() mid_layer = {"kernel_size": 3, "stride": 2} self.avg_pool = Pool("avg", kernel_size=2, stride=1) self.conv = Conv(in_channels, out_channels, **mid_layer) def forward(self, x: Tensor) -> Tensor: x = self.avg_pool(x) x = self.conv(x) return x class ADown(nn.Module): """Downsampling module combining average and max pooling with convolution for feature reduction.""" def __init__(self, in_channels: int, out_channels: int): super().__init__() half_in_channels = in_channels // 2 half_out_channels = out_channels // 2 mid_layer = {"kernel_size": 3, "stride": 2} self.avg_pool = Pool("avg", kernel_size=2, stride=1) self.conv1 = Conv(half_in_channels, half_out_channels, **mid_layer) self.max_pool = Pool("max", **mid_layer) self.conv2 = Conv(half_in_channels, half_out_channels, kernel_size=1) def forward(self, x: Tensor) -> Tensor: x = self.avg_pool(x) x1, x2 = x.chunk(2, dim=1) x1 = self.conv1(x1) x2 = self.max_pool(x2) x2 = self.conv2(x2) return torch.cat((x1, x2), dim=1) class CBLinear(nn.Module): """Convolutional block that outputs multiple feature maps split along the channel dimension.""" def __init__(self, in_channels: int, out_channels: List[int], kernel_size: int = 1, **kwargs): super(CBLinear, self).__init__() kwargs.setdefault("padding", auto_pad(kernel_size, **kwargs)) self.conv = nn.Conv2d(in_channels, sum(out_channels), kernel_size, **kwargs) self.out_channels = list(out_channels) def forward(self, x: Tensor) -> Tuple[Tensor]: x = self.conv(x) return x.split(self.out_channels, dim=1) class SPPCSPConv(nn.Module): # CSP https://github.com/WongKinYiu/CrossStagePartialNetworks def __init__(self, in_channels: int, out_channels: int, expand: float = 0.5, kernel_sizes: Tuple[int] = (5, 9, 13)): super().__init__() neck_channels = int(2 * out_channels * expand) self.pre_conv = nn.Sequential( Conv(in_channels, neck_channels, 1), Conv(neck_channels, neck_channels, 3), Conv(neck_channels, neck_channels, 1), ) self.short_conv = Conv(in_channels, neck_channels, 1) self.pools = nn.ModuleList([Pool(kernel_size=kernel_size, stride=1) for kernel_size in kernel_sizes]) self.post_conv = nn.Sequential(Conv(4 * neck_channels, neck_channels, 1), Conv(neck_channels, neck_channels, 3)) self.merge_conv = Conv(2 * neck_channels, out_channels, 1) def forward(self, x): features = [self.pre_conv(x)] for pool in self.pools: features.append(pool(features[-1])) features = torch.cat(features, dim=1) y1 = self.post_conv(features) y2 = self.short_conv(x) y = torch.cat((y1, y2), dim=1) return self.merge_conv(y) class SPPELAN(nn.Module): """SPPELAN module comprising multiple pooling and convolution layers.""" def __init__(self, in_channels: int, out_channels: int, neck_channels: Optional[int] = None): super(SPPELAN, self).__init__() neck_channels = neck_channels or out_channels // 2 self.conv1 = Conv(in_channels, neck_channels, kernel_size=1) self.pools = nn.ModuleList([Pool("max", 5, stride=1) for _ in range(3)]) self.conv5 = Conv(4 * neck_channels, out_channels, kernel_size=1) def forward(self, x: Tensor) -> Tensor: features = [self.conv1(x)] for pool in self.pools: features.append(pool(features[-1])) return self.conv5(torch.cat(features, dim=1)) class UpSample(nn.Module): def __init__(self, **kwargs): super().__init__() self.UpSample = nn.Upsample(**kwargs) def forward(self, x): return self.UpSample(x) class CBFuse(nn.Module): def __init__(self, index: List[int], mode: str = "nearest"): super().__init__() self.idx = index self.mode = mode def forward(self, x_list: List[torch.Tensor]) -> List[Tensor]: target = x_list[-1] target_size = target.shape[2:] # Batch, Channel, H, W res = [F.interpolate(x[pick_id], size=target_size, mode=self.mode) for pick_id, x in zip(self.idx, x_list)] out = torch.stack(res + [target]).sum(dim=0) return out class ImplicitA(nn.Module): """ Implement YOLOR - implicit knowledge(Add), paper: https://arxiv.org/abs/2105.04206 """ def __init__(self, channel: int, mean: float = 0.0, std: float = 0.02): super().__init__() self.channel = channel self.mean = mean self.std = std self.implicit = nn.Parameter(torch.empty(1, channel, 1, 1)) nn.init.normal_(self.implicit, mean=self.mean, std=self.std) def forward(self, x: torch.Tensor) -> torch.Tensor: return self.implicit + x class ImplicitM(nn.Module): """ Implement YOLOR - implicit knowledge(multiply), paper: https://arxiv.org/abs/2105.04206 """ def __init__(self, channel: int, mean: float = 1.0, std: float = 0.02): super().__init__() self.channel = channel self.mean = mean self.std = std self.implicit = nn.Parameter(torch.empty(1, channel, 1, 1)) nn.init.normal_(self.implicit, mean=self.mean, std=self.std) def forward(self, x: torch.Tensor) -> torch.Tensor: return self.implicit * x