from typing import Any, Dict, Type import torch from torch.optim import Optimizer from torch.optim.lr_scheduler import LambdaLR, SequentialLR, _LRScheduler from yolo.config.config import OptimizerConfig, SchedulerConfig from yolo.model.yolo import YOLO class ExponentialMovingAverage: def __init__(self, model: torch.nn.Module, decay: float): self.model = model self.decay = decay self.shadow = {name: param.clone().detach() for name, param in model.named_parameters()} def update(self): """Update the shadow parameters using the current model parameters.""" for name, param in self.model.named_parameters(): assert name in self.shadow, "All model parameters should have a corresponding shadow parameter." new_average = (1.0 - self.decay) * param.data + self.decay * self.shadow[name] self.shadow[name] = new_average.clone() def apply_shadow(self): """Apply the shadow parameters to the model.""" for name, param in self.model.named_parameters(): param.data.copy_(self.shadow[name]) def restore(self): """Restore the original parameters from the shadow.""" for name, param in self.model.named_parameters(): self.shadow[name].copy_(param.data) def create_optimizer(model: YOLO, optim_cfg: OptimizerConfig) -> Optimizer: """Create an optimizer for the given model parameters based on the configuration. Returns: An instance of the optimizer configured according to the provided settings. """ optimizer_class: Type[Optimizer] = getattr(torch.optim, optim_cfg.type) bias_params = [p for name, p in model.named_parameters() if "bias" in name] norm_params = [p for name, p in model.named_parameters() if "weight" in name and "bn" in name] conv_params = [p for name, p in model.named_parameters() if "weight" in name and "bn" not in name] model_parameters = [ {"params": bias_params, "nestrov": True, "momentum": 0.937}, {"params": conv_params, "weight_decay": 0.0}, {"params": norm_params, "weight_decay": 1e-5}, ] return optimizer_class(model_parameters, **optim_cfg.args) def create_scheduler(optimizer: Optimizer, schedule_cfg: SchedulerConfig) -> _LRScheduler: """Create a learning rate scheduler for the given optimizer based on the configuration. Returns: An instance of the scheduler configured according to the provided settings. """ scheduler_class: Type[_LRScheduler] = getattr(torch.optim.lr_scheduler, schedule_cfg.type) schedule = scheduler_class(optimizer, **schedule_cfg.args) if hasattr(schedule_cfg, "warmup"): wepoch = schedule_cfg.warmup.epochs lambda1 = lambda epoch: 0.1 + 0.9 * (epoch + 1 / wepoch) if epoch < wepoch else 1 lambda2 = lambda epoch: 10 - 9 * (epoch / wepoch) if epoch < wepoch else 1 warmup_schedule = LambdaLR(optimizer, lr_lambda=[lambda1, lambda2, lambda1]) schedule = SequentialLR(optimizer, schedulers=[warmup_schedule, schedule], milestones=[2]) return schedule