import os from typing import Any, Dict, List, Union import torch from loguru import logger from omegaconf import ListConfig, OmegaConf from torch import device, nn from yolo.config.config import Config, ModelConfig, YOLOLayer from yolo.tools.dataset_preparation import prepare_weight from yolo.tools.drawer import draw_model from yolo.utils.logging_utils import log_model_structure from yolo.utils.module_utils import get_layer_map class YOLO(nn.Module): """ A preliminary YOLO (You Only Look Once) model class still under development. Parameters: model_cfg: Configuration for the YOLO model. Expected to define the layers, parameters, and any other relevant configuration details. """ def __init__(self, model_cfg: ModelConfig, class_num: int = 80): super(YOLO, self).__init__() self.num_classes = class_num self.layer_map = get_layer_map() # Get the map Dict[str: Module] self.model: List[YOLOLayer] = nn.ModuleList() self.build_model(model_cfg.model) def build_model(self, model_arch: Dict[str, List[Dict[str, Dict[str, Dict]]]]): self.layer_index = {} output_dim, layer_idx = [3], 1 logger.info(f"🚜 Building YOLO") for arch_name in model_arch: logger.info(f" 🏗️ Building {arch_name}") for layer_idx, layer_spec in enumerate(model_arch[arch_name], start=layer_idx): layer_type, layer_info = next(iter(layer_spec.items())) layer_args = layer_info.get("args", {}) # Get input source source = self.get_source_idx(layer_info.get("source", -1), layer_idx) # Find in channels if any(module in layer_type for module in ["Conv", "ELAN", "ADown", "CBLinear"]): layer_args["in_channels"] = output_dim[source] if "Detection" in layer_type: layer_args["in_channels"] = [output_dim[idx] for idx in source] if "Detection" in layer_type or "Anchor2Box" in layer_type: layer_args["num_classes"] = self.num_classes # create layers layer = self.create_layer(layer_type, source, layer_info, **layer_args) self.model.append(layer) if layer.tags: if layer.tags in self.layer_index: raise ValueError(f"Duplicate tag '{layer_info['tags']}' found.") self.layer_index[layer.tags] = layer_idx out_channels = self.get_out_channels(layer_type, layer_args, output_dim, source) output_dim.append(out_channels) setattr(layer, "out_c", out_channels) layer_idx += 1 def forward(self, x): y = {0: x} output = dict() for index, layer in enumerate(self.model, start=1): if isinstance(layer.source, list): model_input = [y[idx] for idx in layer.source] else: model_input = y[layer.source] x = layer(model_input) y[-1] = x if layer.usable: y[index] = x if layer.output: output[layer.tags] = x return output def get_out_channels(self, layer_type: str, layer_args: dict, output_dim: list, source: Union[int, list]): if any(module in layer_type for module in ["Conv", "ELAN", "ADown"]): return layer_args["out_channels"] if layer_type == "CBFuse": return output_dim[source[-1]] if layer_type in ["Pool", "UpSample"]: return output_dim[source] if layer_type == "Concat": return sum(output_dim[idx] for idx in source) if layer_type == "IDetect": return None def get_source_idx(self, source: Union[ListConfig, str, int], layer_idx: int): if isinstance(source, ListConfig): return [self.get_source_idx(index, layer_idx) for index in source] if isinstance(source, str): source = self.layer_index[source] if source < -1: source += layer_idx if source > 0: # Using Previous Layer's Output self.model[source - 1].usable = True return source def create_layer(self, layer_type: str, source: Union[int, list], layer_info: Dict, **kwargs) -> YOLOLayer: if layer_type in self.layer_map: layer = self.layer_map[layer_type](**kwargs) setattr(layer, "layer_type", layer_type) setattr(layer, "source", source) setattr(layer, "in_c", kwargs.get("in_channels", None)) setattr(layer, "output", layer_info.get("output", False)) setattr(layer, "tags", layer_info.get("tags", None)) setattr(layer, "usable", 0) return layer else: raise ValueError(f"Unsupported layer type: {layer_type}") def create_model( model_cfg: ModelConfig, class_num: int = 80, weight_path: str = "weights/v9-c.pt", device: device = device("cuda") ) -> YOLO: """Constructs and returns a model from a Dictionary configuration file. Args: config_file (dict): The configuration file of the model. Returns: YOLO: An instance of the model defined by the given configuration. """ OmegaConf.set_struct(model_cfg, False) model = YOLO(model_cfg, class_num) logger.info("✅ Success load model") if weight_path: if not os.path.exists(weight_path): logger.info(f"🌐 Weight {weight_path} not found, try downloading") prepare_weight(weight_path=weight_path) model.model.load_state_dict(torch.load(weight_path, map_location=device)) logger.info("✅ Success load model weight") log_model_structure(model.model) draw_model(model=model) return model.to(device)