import sys from pathlib import Path import hydra import torch from loguru import logger project_root = Path(__file__).resolve().parent.parent sys.path.append(str(project_root)) from yolo.config.config import Config from yolo.tools.data_loader import create_dataloader from yolo.tools.dataset_preparation import prepare_dataset from yolo.tools.trainer import ModelTrainer from yolo.utils.logging_utils import custom_logger, validate_log_directory @hydra.main(config_path="../yolo/config", config_name="config", version_base=None) def main(cfg: Config): custom_logger() save_path = validate_log_directory(cfg.hyper.general, cfg.name) if cfg.download.auto: prepare_dataset(cfg.download) dataloader = create_dataloader(cfg) # TODO: get_device or rank, for DDP mode device = torch.device("cuda" if torch.cuda.is_available() else "cpu") trainer = ModelTrainer(cfg, save_path, device) trainer.train(dataloader, cfg.hyper.train.epoch) if __name__ == "__main__": main()