from typing import Tuple from torch import nn from torch.nn.common_types import _size_2_t def auto_pad(kernel_size: _size_2_t, dilation: _size_2_t = 1, **kwargs) -> Tuple[int, int]: """ Auto Padding for the convolution blocks """ if isinstance(kernel_size, int): kernel_size = (kernel_size, kernel_size) if isinstance(dilation, int): dilation = (dilation, dilation) pad_h = ((kernel_size[0] - 1) * dilation[0]) // 2 pad_w = ((kernel_size[1] - 1) * dilation[1]) // 2 return (pad_h, pad_w) def get_activation(activation: str) -> nn.Module: """ Retrieves an activation function from the PyTorch nn module based on its name, case-insensitively. """ if not activation or activation.lower() in ["false", "none"]: return nn.Identity() activation_map = { name.lower(): obj for name, obj in nn.modules.activation.__dict__.items() if isinstance(obj, type) and issubclass(obj, nn.Module) } if activation.lower() in activation_map: return activation_map[activation.lower()]() else: raise ValueError(f"Activation function '{activation}' is not found in torch.nn")