import sys from pathlib import Path import gradio import torch from omegaconf import OmegaConf sys.path.append(str(Path(__file__).resolve().parent.parent)) from yolo import ( AugmentationComposer, NMSConfig, Vec2Box, bbox_nms, create_model, draw_bboxes, ) DEFAULT_MODEL = "v9-c" IMAGE_SIZE = (640, 640) def load_model(model_name, device): model_cfg = OmegaConf.load(f"yolo/config/model/{model_name}.yaml") model_cfg.model.auxiliary = {} model = create_model(model_cfg, True) model.to(device).eval() return model device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = load_model(DEFAULT_MODEL, device) v2b = Vec2Box(model, IMAGE_SIZE, device) class_list = OmegaConf.load("yolo/config/general.yaml").class_list transform = AugmentationComposer([]) def predict(model_name, image, nms_confidence, nms_iou): global DEFAULT_MODEL, model, device, v2b, class_list if model_name != DEFAULT_MODEL: model = load_model(model_name, device) v2b = Vec2Box(model, IMAGE_SIZE, device) DEFAULT_MODEL = model_name image_tensor, _, rev_tensor = transform(image) image_tensor = image_tensor.to(device)[None] rev_tensor = rev_tensor.to(device) with torch.no_grad(): predict = model(image_tensor) pred_class, _, pred_bbox = v2b(predict["Main"]) nms_config = NMSConfig(nms_confidence, nms_iou) pred_bbox = pred_bbox / rev_tensor[0] - rev_tensor[None, None, 1:] pred_bbox = bbox_nms(pred_class, pred_bbox, nms_config) result_image = draw_bboxes(image, pred_bbox, idx2label=class_list) return result_image interface = gradio.Interface( fn=predict, inputs=[ gradio.components.Dropdown(choices=["v9-c", "v9-m", "v9-s"], value="v9-c", label="Model Name"), gradio.components.Image(type="pil", label="Input Image"), gradio.components.Slider(0, 1, step=0.01, value=0.5, label="NMS Confidence Threshold"), gradio.components.Slider(0, 1, step=0.01, value=0.5, label="NMS IoU Threshold"), ], outputs=gradio.components.Image(type="pil", label="Output Image"), ) if __name__ == "__main__": interface.launch()