import json import os from typing import Dict, List, Optional from tqdm import tqdm def discretize_categories(categories: List[Dict[str, int]]) -> Dict[int, int]: """ Maps each unique 'id' in the list of category dictionaries to a sequential integer index. Indices are assigned based on the sorted 'id' values. """ sorted_categories = sorted(categories, key=lambda category: category["id"]) return {category["id"]: index for index, category in enumerate(sorted_categories)} def process_annotations( image_annotations: Dict[int, List[Dict]], image_info_dict: Dict[int, tuple], output_dir: str, id_to_idx: Optional[Dict[int, int]] = None, ) -> None: """ Process and save annotations to files, with option to remap category IDs. """ for image_id, annotations in tqdm(image_annotations.items(), desc="Processing annotations"): file_path = os.path.join(output_dir, f"{image_id:0>12}.txt") if not annotations: continue with open(file_path, "w") as file: for annotation in annotations: process_annotation(annotation, image_info_dict[image_id], id_to_idx, file) def process_annotation(annotation: Dict, image_dims: tuple, id_to_idx: Optional[Dict[int, int]], file) -> None: """ Convert a single annotation's segmentation and write it to the open file handle. """ category_id = annotation["category_id"] segmentation = ( annotation["segmentation"][0] if annotation["segmentation"] and isinstance(annotation["segmentation"][0], list) else None ) if segmentation is None: return img_width, img_height = image_dims normalized_segmentation = normalize_segmentation(segmentation, img_width, img_height) if id_to_idx: category_id = id_to_idx.get(category_id, category_id) file.write(f"{category_id} {' '.join(normalized_segmentation)}\n") def normalize_segmentation(segmentation: List[float], img_width: int, img_height: int) -> List[str]: """ Normalize and format segmentation coordinates. """ normalized = [ f"{coord / img_width:.6f}" if index % 2 == 0 else f"{coord / img_height:.6f}" for index, coord in enumerate(segmentation) ] return normalized def convert_annotations(json_file: str, output_dir: str) -> None: """ Load annotation data from a JSON file and process all annotations. """ with open(json_file) as file: data = json.load(file) os.makedirs(output_dir, exist_ok=True) image_info_dict = {img["id"]: (img["width"], img["height"]) for img in data.get("images", [])} id_to_idx = discretize_categories(data.get("categories", [])) if "categories" in data else None image_annotations = {img_id: [] for img_id in image_info_dict} for annotation in data.get("annotations", []): if not annotation.get("iscrowd", False): image_annotations[annotation["image_id"]].append(annotation) process_annotations(image_annotations, image_info_dict, output_dir, id_to_idx) if __name__ == "__main__": convert_annotations("./data/coco/annotations/instances_train2017.json", "./data/coco/labels/train2017/") convert_annotations("./data/coco/annotations/instances_val2017.json", "./data/coco/labels/val2017/")