import os import random from typing import List, Optional, Union import numpy as np import torch from loguru import logger from PIL import Image, ImageDraw, ImageFont from torchvision.transforms.functional import to_pil_image def draw_bboxes( img: Union[Image.Image, torch.Tensor], bboxes: List[List[Union[int, float]]], *, idx2label: Optional[list] = None, ): """ Draw bounding boxes on an image. Args: - img (PIL Image or torch.Tensor): Image on which to draw the bounding boxes. - bboxes (List of Lists/Tensors): Bounding boxes with [class_id, x_min, y_min, x_max, y_max], where coordinates are normalized [0, 1]. """ # Convert tensor image to PIL Image if necessary if isinstance(img, torch.Tensor): if img.dim() > 3: logger.warning("🔍 >3 dimension tensor detected, using the 0-idx image.") img = img[0] img = to_pil_image(img) img, bboxes = img.copy(), bboxes[0] label_size = img.size[1] / 30 draw = ImageDraw.Draw(img, "RGBA") try: font = ImageFont.truetype("arial.ttf", label_size) except IOError: font = ImageFont.load_default(label_size) for bbox in bboxes: class_id, x_min, y_min, x_max, y_max, *conf = [float(val) for val in bbox] bbox = [(x_min, y_min), (x_max, y_max)] random.seed(int(class_id)) color_map = (random.randint(0, 200), random.randint(0, 200), random.randint(0, 200)) draw.rounded_rectangle(bbox, outline=(*color_map, 200), radius=5, width=2) draw.rounded_rectangle(bbox, fill=(*color_map, 100), radius=5) class_text = str(idx2label[int(class_id)] if idx2label else int(class_id)) label_text = f"{class_text}" + (f" {conf[0]: .0%}" if conf else "") text_bbox = font.getbbox(label_text) text_width = text_bbox[2] - text_bbox[0] text_height = (text_bbox[3] - text_bbox[1]) * 1.5 text_background = [(x_min, y_min), (x_min + text_width, y_min + text_height)] draw.rounded_rectangle(text_background, fill=(*color_map, 175), radius=2) draw.text((x_min, y_min), label_text, fill="white", font=font) return img def draw_model(*, model_cfg=None, model=None, v7_base=False): from graphviz import Digraph if model_cfg: from yolo.model.yolo import create_model model = create_model(model_cfg) elif model is None: raise ValueError("Drawing Object is None") model_size = len(model.model) + 1 model_mat = np.zeros((model_size, model_size), dtype=bool) layer_name = ["INPUT"] for idx, layer in enumerate(model.model, start=1): layer_name.append(str(type(layer)).split(".")[-1][:-2]) if layer.tags is not None: layer_name[-1] = f"{layer.tags}-{layer_name[-1]}" if isinstance(layer.source, int): source = layer.source + (layer.source < 0) * idx model_mat[source, idx] = True else: for source in layer.source: source = source + (source < 0) * idx model_mat[source, idx] = True pattern_mat = [] if v7_base: pattern_list = [("ELAN", 8, 3), ("ELAN", 8, 55), ("MP", 5, 11)] for name, size, position in pattern_list: pattern_mat.append( (name, size, model_mat[position : position + size, position + 1 : position + 1 + size].copy()) ) dot = Digraph(comment="Model Flow Chart") node_idx = 0 for idx in range(model_size): for jdx in range(idx, model_size - 7): for name, size, pattern in pattern_mat: if (model_mat[idx : idx + size, jdx : jdx + size] == pattern).all(): layer_name[idx] = name model_mat[idx : idx + size, jdx : jdx + size] = False model_mat[idx, idx + size] = True dot.node(str(idx), f"{layer_name[idx]}") node_idx += 1 for jdx in range(idx, model_size): if model_mat[idx, jdx]: dot.edge(str(idx), str(jdx)) try: dot.render("Model-arch", format="png", cleanup=True) logger.info("🎨 Drawing Model Architecture at Model-arch.png") except: logger.warning("⚠️ Could not find graphviz backend, continue without drawing the model architecture")