Setup Config ============ To set up your configuration, you will need to generate a configuration class based on :class:`~yolo.config.config.Config`, which can be achieved using `hydra `_. The configuration will include all the necessary settings for your ``task``, including general configuration, ``dataset`` information, and task-specific information (``train``, ``inference``, ``validation``). Next, create the progress logger to handle the output and progress bar. This class is based on `rich `_'s progress bar and customizes the logger (print function) using `loguru `_. .. tabs:: .. tab:: decorator .. code-block:: python import hydra from yolo import ProgressLogger from yolo.config.config import Config @hydra.main(config_path="config", config_name="config", version_base=None) def main(cfg: Config): progress = ProgressLogger(cfg, exp_name=cfg.name) pass .. tab:: initialize & compose .. code-block:: python from hydra import compose, initialize from yolo import ProgressLogger from yolo.config.config import Config with initialize(config_path="config", version_base=None): cfg = compose(config_name="config", overrides=["task=train", "model=v9-c"]) progress = ProgressLogger(cfg, exp_name=cfg.name) TODO: add a config over view