Build Model =========== In YOLOv7, the prediction will be ``Anchor``, and in YOLOv9, it will predict ``Vector``. The converter will turn the bounding box to the vector. The overall model flowchart is as follows: .. mermaid:: flowchart LR Input-->Model; Model--Class-->NMS; Model--Anc/Vec-->Converter; Converter--Box-->NMS; NMS-->Output; Load Model ~~~~~~~~~~ Using `create_model`, it will automatically create the :class:`~yolo.model.yolo.YOLO` model and load the provided weights. Arguments: - **model**: :class:`~yolo.config.config.ModelConfig` The model configuration. - **class_num**: :guilabel:`int` The number of classes in the dataset, used for the YOLO's prediction head. - **weight_path**: :guilabel:`Path | bool` The path to the model weights. - If `False`, weights are not loaded. - If :guilabel:`True | None`, default weights are loaded. - If a `Path`, the model weights are loaded from the specified path. .. code-block:: python model = create_model(cfg.model, class_num=cfg.dataset.class_num, weight_path=cfg.weight) model = model.to(device) Deploy Model ~~~~~~~~~~~~ In the deployment version, we will remove the auxiliary branch of the model for fast inference. If the config includes ONNX and TensorRT, it will load/compile the model to ONNX or TensorRT format after removing the auxiliary branch. .. code-block:: python model = FastModelLoader(cfg).load_model(device) Autoload Converter ~~~~~~~~~~~~~~~~~~ Autoload the converter based on the model type (v7 or v9). Arguments: - **Model Name**: :guilabel:`str` Used for choosing ``Vec2Box`` or ``Anc2Box``. - **Anchor Config**: The anchor configuration, used to generate the anchor grid. - **model**, **image_size**: Used for auto-detecting the anchor grid. .. code-block:: python converter = create_converter(cfg.model.name, model, cfg.model.anchor, cfg.image_size, device)