from typing import List import numpy as np import torch from PIL import Image from torchvision.transforms import functional as TF class AugmentationComposer: """Composes several transforms together.""" def __init__(self, transforms, image_size: int = [640, 640], base_size: int = 640): self.transforms = transforms # TODO: handle List of image_size [640, 640] self.pad_resize = PadAndResize(image_size) self.base_size = base_size for transform in self.transforms: if hasattr(transform, "set_parent"): transform.set_parent(self) def __call__(self, image, boxes=torch.zeros(0, 5)): for transform in self.transforms: image, boxes = transform(image, boxes) image, boxes, rev_tensor = self.pad_resize(image, boxes) image = TF.to_tensor(image) return image, boxes, rev_tensor class RemoveOutliers: """Removes outlier bounding boxes that are too small or have invalid dimensions.""" def __init__(self, min_box_area=1e-8): """ Args: min_box_area (float): Minimum area for a box to be kept, as a fraction of the image area. """ self.min_box_area = min_box_area def __call__(self, image, boxes): """ Args: image (PIL.Image): The cropped image. boxes (torch.Tensor): Bounding boxes in normalized coordinates (x_min, y_min, x_max, y_max). Returns: PIL.Image: The input image (unchanged). torch.Tensor: Filtered bounding boxes. """ box_areas = (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 4] - boxes[:, 2]) valid_boxes = (box_areas > self.min_box_area) & (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 4] > boxes[:, 2]) return image, boxes[valid_boxes] class PadAndResize: def __init__(self, image_size, background_color=(114, 114, 114)): """Initialize the object with the target image size.""" self.target_width, self.target_height = image_size self.background_color = background_color def set_size(self, image_size: List[int]): self.target_width, self.target_height = image_size def __call__(self, image: Image, boxes): img_width, img_height = image.size scale = min(self.target_width / img_width, self.target_height / img_height) new_width, new_height = int(img_width * scale), int(img_height * scale) resized_image = image.resize((new_width, new_height), Image.Resampling.LANCZOS) pad_left = (self.target_width - new_width) // 2 pad_top = (self.target_height - new_height) // 2 padded_image = Image.new("RGB", (self.target_width, self.target_height), self.background_color) padded_image.paste(resized_image, (pad_left, pad_top)) boxes[:, [1, 3]] = (boxes[:, [1, 3]] * new_width + pad_left) / self.target_width boxes[:, [2, 4]] = (boxes[:, [2, 4]] * new_height + pad_top) / self.target_height transform_info = torch.tensor([scale, pad_left, pad_top, pad_left, pad_top]) return padded_image, boxes, transform_info class HorizontalFlip: """Randomly horizontally flips the image along with the bounding boxes.""" def __init__(self, prob=0.5): self.prob = prob def __call__(self, image, boxes): if torch.rand(1) < self.prob: image = TF.hflip(image) boxes[:, [1, 3]] = 1 - boxes[:, [3, 1]] return image, boxes class VerticalFlip: """Randomly vertically flips the image along with the bounding boxes.""" def __init__(self, prob=0.5): self.prob = prob def __call__(self, image, boxes): if torch.rand(1) < self.prob: image = TF.vflip(image) boxes[:, [2, 4]] = 1 - boxes[:, [4, 2]] return image, boxes class Mosaic: """Applies the Mosaic augmentation to a batch of images and their corresponding boxes.""" def __init__(self, prob=0.5): self.prob = prob self.parent = None def set_parent(self, parent): self.parent = parent def __call__(self, image, boxes): if torch.rand(1) >= self.prob: return image, boxes assert self.parent is not None, "Parent is not set. Mosaic cannot retrieve image size." img_sz = self.parent.base_size # Assuming `image_size` is defined in parent more_data = self.parent.get_more_data(3) # get 3 more images randomly data = [(image, boxes)] + more_data mosaic_image = Image.new("RGB", (2 * img_sz, 2 * img_sz), (114, 114, 114)) vectors = np.array([(-1, -1), (0, -1), (-1, 0), (0, 0)]) center = np.array([img_sz, img_sz]) all_labels = [] for (image, boxes), vector in zip(data, vectors): this_w, this_h = image.size coord = tuple(center + vector * np.array([this_w, this_h])) mosaic_image.paste(image, coord) xmin, ymin, xmax, ymax = boxes[:, 1], boxes[:, 2], boxes[:, 3], boxes[:, 4] xmin = (xmin * this_w + coord[0]) / (2 * img_sz) xmax = (xmax * this_w + coord[0]) / (2 * img_sz) ymin = (ymin * this_h + coord[1]) / (2 * img_sz) ymax = (ymax * this_h + coord[1]) / (2 * img_sz) adjusted_boxes = torch.stack([boxes[:, 0], xmin, ymin, xmax, ymax], dim=1) all_labels.append(adjusted_boxes) all_labels = torch.cat(all_labels, dim=0) mosaic_image = mosaic_image.resize((img_sz, img_sz)) return mosaic_image, all_labels class MixUp: """Applies the MixUp augmentation to a pair of images and their corresponding boxes.""" def __init__(self, prob=0.5, alpha=1.0): self.alpha = alpha self.prob = prob self.parent = None def set_parent(self, parent): """Set the parent dataset object for accessing dataset methods.""" self.parent = parent def __call__(self, image, boxes): if torch.rand(1) >= self.prob: return image, boxes assert self.parent is not None, "Parent is not set. MixUp cannot retrieve additional data." # Retrieve another image and its boxes randomly from the dataset image2, boxes2 = self.parent.get_more_data()[0] # Calculate the mixup lambda parameter lam = np.random.beta(self.alpha, self.alpha) if self.alpha > 0 else 0.5 # Mix images image1, image2 = TF.to_tensor(image), TF.to_tensor(image2) mixed_image = lam * image1 + (1 - lam) * image2 # Merge bounding boxes merged_boxes = torch.cat((boxes, boxes2)) return TF.to_pil_image(mixed_image), merged_boxes class RandomCrop: """Randomly crops the image to half its size along with adjusting the bounding boxes.""" def __init__(self, prob=0.5): """ Args: prob (float): Probability of applying the crop. """ self.prob = prob def __call__(self, image, boxes): if torch.rand(1) < self.prob: original_width, original_height = image.size crop_height, crop_width = original_height // 2, original_width // 2 top = torch.randint(0, original_height - crop_height + 1, (1,)).item() left = torch.randint(0, original_width - crop_width + 1, (1,)).item() image = TF.crop(image, top, left, crop_height, crop_width) boxes[:, [1, 3]] = boxes[:, [1, 3]] * original_width - left boxes[:, [2, 4]] = boxes[:, [2, 4]] * original_height - top boxes[:, [1, 3]] = boxes[:, [1, 3]].clamp(0, crop_width) boxes[:, [2, 4]] = boxes[:, [2, 4]].clamp(0, crop_height) boxes[:, [1, 3]] /= crop_width boxes[:, [2, 4]] /= crop_height return image, boxes