import inspect from typing import Tuple, Union from torch import Tensor, nn from torch.nn.common_types import _size_2_t def get_layer_map(): """ Dynamically generates a dictionary mapping class names to classes, filtering to include only those that are subclasses of nn.Module, ensuring they are relevant neural network layers. """ layer_map = {} from yolo.model import module for name, obj in inspect.getmembers(module, inspect.isclass): if issubclass(obj, nn.Module) and obj is not nn.Module: layer_map[name] = obj return layer_map def auto_pad(kernel_size: _size_2_t, dilation: _size_2_t = 1, **kwargs) -> Tuple[int, int]: """ Auto Padding for the convolution blocks """ if isinstance(kernel_size, int): kernel_size = (kernel_size, kernel_size) if isinstance(dilation, int): dilation = (dilation, dilation) pad_h = ((kernel_size[0] - 1) * dilation[0]) // 2 pad_w = ((kernel_size[1] - 1) * dilation[1]) // 2 return (pad_h, pad_w) def create_activation_function(activation: str) -> nn.Module: """ Retrieves an activation function from the PyTorch nn module based on its name, case-insensitively. """ if not activation or activation.lower() in ["false", "none"]: return nn.Identity() activation_map = { name.lower(): obj for name, obj in nn.modules.activation.__dict__.items() if isinstance(obj, type) and issubclass(obj, nn.Module) } if activation.lower() in activation_map: return activation_map[activation.lower()](inplace=True) else: raise ValueError(f"Activation function '{activation}' is not found in torch.nn") def round_up(x: Union[int, Tensor], div: int = 1) -> Union[int, Tensor]: """ Rounds up `x` to the bigger-nearest multiple of `div`. """ return x + (-x % div) def divide_into_chunks(input_list, chunk_num): """ Args: input_list: [0, 1, 2, 3, 4, 5], chunk: 2 Return: [[0, 1, 2], [3, 4, 5]] """ list_size = len(input_list) if list_size % chunk_num != 0: raise ValueError( f"The length of the input list ({list_size}) must be exactly divisible by the number of chunks ({chunk_num})." ) chunk_size = list_size // chunk_num return [input_list[i : i + chunk_size] for i in range(0, list_size, chunk_size)]