Spaces:
Runtime error
Runtime error
henryhyunwookim
commited on
Update utils/utils.py
Browse files- utils/utils.py +176 -153
utils/utils.py
CHANGED
@@ -1,154 +1,177 @@
|
|
1 |
-
import os
|
2 |
-
import logging
|
3 |
-
from datetime import datetime
|
4 |
-
from pathlib import Path
|
5 |
-
import pickle
|
6 |
-
from tqdm import tqdm
|
7 |
-
from datasets import load_dataset
|
8 |
-
import chromadb
|
9 |
-
import matplotlib.pyplot as plt
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
# Get the
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
plt.
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
print("-------------------------------------------------------")
|
150 |
-
logger.info("-------------------------------------------------------")
|
151 |
-
|
152 |
-
|
153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
return collection, data_set, model, logger
|
|
|
1 |
+
import os
|
2 |
+
import logging
|
3 |
+
from datetime import datetime
|
4 |
+
from pathlib import Path
|
5 |
+
import pickle
|
6 |
+
from tqdm import tqdm
|
7 |
+
from datasets import load_dataset
|
8 |
+
import chromadb
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
from sentence_transformers import SentenceTransformer
|
11 |
+
import google.generativeai as genai
|
12 |
+
from dotenv import load_dotenv
|
13 |
+
|
14 |
+
|
15 |
+
def set_directories():
|
16 |
+
curr_dir = Path(os.getcwd())
|
17 |
+
|
18 |
+
data_dir = curr_dir / 'data'
|
19 |
+
data_pickle_path = data_dir / 'data_set.pkl'
|
20 |
+
|
21 |
+
vectordb_dir = curr_dir / 'vector_storage'
|
22 |
+
chroma_dir = vectordb_dir / 'chroma'
|
23 |
+
|
24 |
+
for dir in [data_dir, vectordb_dir, chroma_dir]:
|
25 |
+
if not os.path.exists(dir):
|
26 |
+
os.mkdir(dir)
|
27 |
+
|
28 |
+
return data_pickle_path, chroma_dir
|
29 |
+
|
30 |
+
|
31 |
+
def load_data(data_pickle_path, dataset="vipulmaheshwari/GTA-Image-Captioning-Dataset"):
|
32 |
+
if not os.path.exists(data_pickle_path):
|
33 |
+
print(f"Data set hasn't been loaded. Loading from the datasets library and save it as a pickle.")
|
34 |
+
data_set = load_dataset(dataset)
|
35 |
+
with open(data_pickle_path, 'wb') as outfile:
|
36 |
+
pickle.dump(data_set, outfile)
|
37 |
+
else:
|
38 |
+
print(f"Data set already exists in the local drive. Loading it.")
|
39 |
+
with open(data_pickle_path, 'rb') as infile:
|
40 |
+
data_set = pickle.load(infile)
|
41 |
+
|
42 |
+
return data_set
|
43 |
+
|
44 |
+
|
45 |
+
def get_embeddings(data, model):
|
46 |
+
# Get the id and embedding of each data/image
|
47 |
+
ids = []
|
48 |
+
embeddings = []
|
49 |
+
for id, image in tqdm(zip(list(range(len(data))), data)):
|
50 |
+
ids.append("image "+str(id))
|
51 |
+
|
52 |
+
embedding = model.encode(image)
|
53 |
+
embeddings.append(embedding.tolist())
|
54 |
+
|
55 |
+
return ids, embeddings
|
56 |
+
|
57 |
+
|
58 |
+
def get_collection(chroma_dir, model, collection_name, data):
|
59 |
+
client = chromadb.PersistentClient(path=chroma_dir.__str__())
|
60 |
+
collection = client.get_or_create_collection(name=collection_name)
|
61 |
+
|
62 |
+
if collection.count() != len(data):
|
63 |
+
print("Adding embeddings to the collection.")
|
64 |
+
ids, embeddings = get_embeddings(data, model)
|
65 |
+
collection.add(
|
66 |
+
ids=ids,
|
67 |
+
embeddings=embeddings
|
68 |
+
)
|
69 |
+
else:
|
70 |
+
print("Embeddings are already added to the collection.")
|
71 |
+
|
72 |
+
return collection
|
73 |
+
|
74 |
+
|
75 |
+
def get_search_result(collection, data_set, query, model, n_results=2):
|
76 |
+
# Query the vector store and get results
|
77 |
+
results = collection.query(
|
78 |
+
query_embeddings=model.encode([query]),
|
79 |
+
n_results=2
|
80 |
+
)
|
81 |
+
|
82 |
+
# Get the id of the most relevant image
|
83 |
+
img_id = int(results['ids'][0][0].split('image ')[-1])
|
84 |
+
|
85 |
+
# Get the image and its caption
|
86 |
+
image = data_set['train']['image'][img_id]
|
87 |
+
text = data_set['train']['text'][img_id]
|
88 |
+
|
89 |
+
return image, text
|
90 |
+
|
91 |
+
|
92 |
+
def show_image(image, text, query):
|
93 |
+
plt.ion()
|
94 |
+
plt.axis("off")
|
95 |
+
plt.imshow(image)
|
96 |
+
plt.show()
|
97 |
+
print(f"User query: {query}")
|
98 |
+
print(f"Original description: {text}\n")
|
99 |
+
|
100 |
+
|
101 |
+
def get_logger():
|
102 |
+
log_path = "./log/"
|
103 |
+
if not os.path.exists(log_path):
|
104 |
+
os.mkdir(log_path)
|
105 |
+
|
106 |
+
cur_date = datetime.utcnow().strftime("%Y%m%d")
|
107 |
+
log_filename = f"{log_path}{cur_date}.log"
|
108 |
+
|
109 |
+
logging.basicConfig(
|
110 |
+
filename=log_filename,
|
111 |
+
level=logging.INFO,
|
112 |
+
format="%(asctime)s %(levelname)-8s %(message)s",
|
113 |
+
datefmt="%Y-%m-%d %H:%M:%S")
|
114 |
+
|
115 |
+
logger = logging.getLogger(__name__)
|
116 |
+
|
117 |
+
return logger
|
118 |
+
|
119 |
+
|
120 |
+
def get_image_description(image):
|
121 |
+
_ = load_dotenv()
|
122 |
+
GOOGLE_API_KEY = os.environ['GOOGLE_API_KEY']
|
123 |
+
genai.configure(api_key=GOOGLE_API_KEY)
|
124 |
+
|
125 |
+
vision_model = genai.GenerativeModel(
|
126 |
+
"gemini-pro-vision",
|
127 |
+
generation_config={
|
128 |
+
"temperature": 0.0
|
129 |
+
}
|
130 |
+
)
|
131 |
+
|
132 |
+
# image = Image.open(image_path)
|
133 |
+
|
134 |
+
prompt = f"""
|
135 |
+
Describe what you explicitly see in the given image in detail.
|
136 |
+
Begin your description with "In this image," or "This image is about," to provide context.
|
137 |
+
Your response should be a hard description of the given image without any thoughts or suggestions.
|
138 |
+
"""
|
139 |
+
|
140 |
+
response = vision_model.generate_content([prompt, image])
|
141 |
+
description_by_llm = response.text
|
142 |
+
|
143 |
+
return description_by_llm
|
144 |
+
|
145 |
+
|
146 |
+
def initialization(logger):
|
147 |
+
print("Initializing...")
|
148 |
+
logger.info("Initializing...")
|
149 |
+
print("-------------------------------------------------------")
|
150 |
+
logger.info("-------------------------------------------------------")
|
151 |
+
|
152 |
+
print("Set directories...")
|
153 |
+
logger.info("Set directories...")
|
154 |
+
# Set directories
|
155 |
+
data_pickle_path, chroma_dir = set_directories()
|
156 |
+
|
157 |
+
print("Loading data...")
|
158 |
+
logger.info("Loading data...")
|
159 |
+
# Load dataset
|
160 |
+
data_set = load_data(data_pickle_path)
|
161 |
+
|
162 |
+
print("Loading CLIP model...")
|
163 |
+
logger.info("Loading CLIP model...")
|
164 |
+
# Load CLIP model
|
165 |
+
model = SentenceTransformer("sentence-transformers/clip-ViT-L-14")
|
166 |
+
|
167 |
+
print("Getting vector embeddings...")
|
168 |
+
logger.info("Getting vector embeddings...")
|
169 |
+
# Get vector embeddings
|
170 |
+
collection = get_collection(chroma_dir, model, collection_name='image_vectors', data=data_set['train']['image'])
|
171 |
+
|
172 |
+
print("-------------------------------------------------------")
|
173 |
+
logger.info("-------------------------------------------------------")
|
174 |
+
print("Initialization completed! Ready for search.")
|
175 |
+
logger.info("Initialization completed! Ready for search.")
|
176 |
+
|
177 |
return collection, data_set, model, logger
|