gracewanggw
commited on
Commit
·
a34b545
1
Parent(s):
a291c56
everything so far SAM model
Browse files- .gitattributes +2 -0
- .gitignore +3 -1
- README.md +7 -0
- annotated.png +0 -0
- app.py +431 -0
- examples/new_blank_image.png +0 -0
- examples/without_crop.png +0 -0
- examples/without_crop2.png +0 -0
- flagged/log.csv +2 -0
- model_best_epoch_4_59.62.pth +3 -0
- requirements.txt +7 -0
- sam_vit_h_4b8939.pth +3 -0
.gitattributes
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
sam_vit_h_4b8939.pth filter=lfs diff=lfs merge=lfs -text
|
2 |
+
model_best_epoch_4_59.62.pth filter=lfs diff=lfs merge=lfs -text
|
.gitignore
CHANGED
@@ -1 +1,3 @@
|
|
1 |
-
|
|
|
|
|
|
1 |
+
.DS_Store
|
2 |
+
venv/
|
3 |
+
__pycache__/
|
README.md
CHANGED
@@ -1,3 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# 👩🏾💻 Project Starter Template
|
2 |
|
3 |
[Project Description]
|
|
|
1 |
+
---
|
2 |
+
title: Barnacle Counter
|
3 |
+
sdk: gradio
|
4 |
+
app_file: app.py
|
5 |
+
pinned: false
|
6 |
+
---
|
7 |
+
|
8 |
# 👩🏾💻 Project Starter Template
|
9 |
|
10 |
[Project Description]
|
annotated.png
ADDED
app.py
ADDED
@@ -0,0 +1,431 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import math
|
4 |
+
import torch
|
5 |
+
import random
|
6 |
+
from PIL import Image
|
7 |
+
|
8 |
+
from torch.utils.data import DataLoader
|
9 |
+
from torchvision.transforms import Resize
|
10 |
+
|
11 |
+
torch.manual_seed(12345)
|
12 |
+
random.seed(12345)
|
13 |
+
np.random.seed(12345)
|
14 |
+
|
15 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
16 |
+
|
17 |
+
class WireframeExtractor:
|
18 |
+
|
19 |
+
def __call__(self, image: np.ndarray):
|
20 |
+
"""
|
21 |
+
Extract corners of wireframe from a barnacle image
|
22 |
+
:param image: Numpy RGB image of shape (W, H, 3)
|
23 |
+
:return [x1, y1, x2, y2]
|
24 |
+
"""
|
25 |
+
h, w = image.shape[:2]
|
26 |
+
imghsv = cv2.cvtColor(image, cv2.COLOR_RGB2HSV)
|
27 |
+
hsvblur = cv2.GaussianBlur(imghsv, (9, 9), 0)
|
28 |
+
|
29 |
+
lower = np.array([70, 20, 20])
|
30 |
+
upper = np.array([130, 255, 255])
|
31 |
+
|
32 |
+
color_mask = cv2.inRange(hsvblur, lower, upper)
|
33 |
+
|
34 |
+
invert = cv2.bitwise_not(color_mask)
|
35 |
+
|
36 |
+
contours, _ = cv2.findContours(invert, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
|
37 |
+
|
38 |
+
max_contour = contours[0]
|
39 |
+
largest_area = 0
|
40 |
+
for index, contour in enumerate(contours):
|
41 |
+
area = cv2.contourArea(contour)
|
42 |
+
if area > largest_area:
|
43 |
+
if cv2.pointPolygonTest(contour, (w / 2, h / 2), False) == 1:
|
44 |
+
largest_area = area
|
45 |
+
max_contour = contour
|
46 |
+
|
47 |
+
x, y, w, h = cv2.boundingRect(max_contour)
|
48 |
+
# return [x, y, x + w, y + h]
|
49 |
+
return x,y,w,h
|
50 |
+
|
51 |
+
wireframe_extractor = WireframeExtractor()
|
52 |
+
|
53 |
+
def show_anns(anns):
|
54 |
+
if len(anns) == 0:
|
55 |
+
return
|
56 |
+
sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True)
|
57 |
+
ax = plt.gca()
|
58 |
+
ax.set_autoscale_on(False)
|
59 |
+
polygons = []
|
60 |
+
color = []
|
61 |
+
for ann in sorted_anns:
|
62 |
+
m = ann['segmentation']
|
63 |
+
img = np.ones((m.shape[0], m.shape[1], 3))
|
64 |
+
color_mask = np.random.random((1, 3)).tolist()[0]
|
65 |
+
for i in range(3):
|
66 |
+
img[:,:,i] = color_mask[i]
|
67 |
+
ax.imshow(np.dstack((img, m*0.35)))
|
68 |
+
|
69 |
+
|
70 |
+
# def find_contours(img, color):
|
71 |
+
# low = color - 10
|
72 |
+
# high = color + 10
|
73 |
+
|
74 |
+
# mask = cv2.inRange(img, low, high)
|
75 |
+
# contours, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
76 |
+
|
77 |
+
# print(f"Total Contours: {len(contours)}")
|
78 |
+
# nonempty_contours = list()
|
79 |
+
# for i in range(len(contours)):
|
80 |
+
# if hierarchy[0,i,3] == -1 and cv2.contourArea(contours[i]) > cv2.arcLength(contours[i], True):
|
81 |
+
# nonempty_contours += [contours[i]]
|
82 |
+
# print(f"Nonempty Contours: {len(nonempty_contours)}")
|
83 |
+
# contour_plot = img.copy()
|
84 |
+
# contour_plot = cv2.drawContours(contour_plot, nonempty_contours, -1, (0,255,0), -1)
|
85 |
+
|
86 |
+
# sorted_contours = sorted(nonempty_contours, key=cv2.contourArea, reverse= True)
|
87 |
+
|
88 |
+
# bounding_rects = [cv2.boundingRect(cnt) for cnt in contours]
|
89 |
+
|
90 |
+
# for (i,c) in enumerate(sorted_contours):
|
91 |
+
# M= cv2.moments(c)
|
92 |
+
# cx= int(M['m10']/M['m00'])
|
93 |
+
# cy= int(M['m01']/M['m00'])
|
94 |
+
# cv2.putText(contour_plot, text= str(i), org=(cx,cy),
|
95 |
+
# fontFace= cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.25, color=(255,255,255),
|
96 |
+
# thickness=1, lineType=cv2.LINE_AA)
|
97 |
+
|
98 |
+
# N = len(sorted_contours)
|
99 |
+
# H, W, C = img.shape
|
100 |
+
# boxes_array_xywh = [cv2.boundingRect(cnt) for cnt in sorted_contours]
|
101 |
+
# boxes_array_corners = [[x, y, x+w, y+h] for x, y, w, h in boxes_array_xywh]
|
102 |
+
# boxes = torch.tensor(boxes_array_corners)
|
103 |
+
|
104 |
+
# labels = torch.ones(N)
|
105 |
+
# masks = np.zeros([N, H, W])
|
106 |
+
# for idx in range(len(sorted_contours)):
|
107 |
+
# cnt = sorted_contours[idx]
|
108 |
+
# cv2.drawContours(masks[idx,:,:], [cnt], 0, (255), -1)
|
109 |
+
# masks = masks / 255.0
|
110 |
+
# masks = torch.tensor(masks)
|
111 |
+
|
112 |
+
# # for box in boxes:
|
113 |
+
# # cv2.rectangle(contour_plot, (box[0].item(), box[1].item()), (box[2].item(), box[3].item()), (255,0,0), 2)
|
114 |
+
|
115 |
+
# return contour_plot, (boxes, masks)
|
116 |
+
|
117 |
+
|
118 |
+
# def get_dataset_x(blank_image, filter_size=50, filter_stride=2):
|
119 |
+
# full_image_tensor = torch.tensor(blank_image).type(torch.FloatTensor).permute(2, 0, 1).unsqueeze(0)
|
120 |
+
# num_windows_h = math.floor((full_image_tensor.shape[2] - filter_size) / filter_stride) + 1
|
121 |
+
# num_windows_w = math.floor((full_image_tensor.shape[3] - filter_size) / filter_stride) + 1
|
122 |
+
# windows = torch.nn.functional.unfold(full_image_tensor, (filter_size, filter_size), stride=filter_stride).reshape(
|
123 |
+
# [1, 3, 50, 50, num_windows_h * num_windows_w]).permute([0, 4, 1, 2, 3]).squeeze()
|
124 |
+
|
125 |
+
# dataset_images = [windows[idx] for idx in range(len(windows))]
|
126 |
+
# dataset = list(dataset_images)
|
127 |
+
# return dataset
|
128 |
+
|
129 |
+
|
130 |
+
# def get_dataset(labeled_image, blank_image, color, filter_size=50, filter_stride=2, label_size=5):
|
131 |
+
# contour_plot, (blue_boxes, blue_masks) = find_contours(labeled_image, color)
|
132 |
+
|
133 |
+
# mask = torch.sum(blue_masks, 0)
|
134 |
+
|
135 |
+
# label_dim = int((labeled_image.shape[0] - filter_size) / filter_stride + 1)
|
136 |
+
# labels = torch.zeros(label_dim, label_dim)
|
137 |
+
# mask_labels = torch.zeros(label_dim, label_dim, filter_size, filter_size)
|
138 |
+
|
139 |
+
# for lx in range(label_dim):
|
140 |
+
# for ly in range(label_dim):
|
141 |
+
# mask_labels[lx, ly, :, :] = mask[
|
142 |
+
# lx * filter_stride: lx * filter_stride + filter_size,
|
143 |
+
# ly * filter_stride: ly * filter_stride + filter_size
|
144 |
+
# ]
|
145 |
+
|
146 |
+
# print(labels.shape)
|
147 |
+
# for box in blue_boxes:
|
148 |
+
# x = int((box[0] + box[2]) / 2)
|
149 |
+
# y = int((box[1] + box[3]) / 2)
|
150 |
+
|
151 |
+
# window_x = int((x - int(filter_size / 2)) / filter_stride)
|
152 |
+
# window_y = int((y - int(filter_size / 2)) / filter_stride)
|
153 |
+
|
154 |
+
# clamp = lambda n, minn, maxn: max(min(maxn, n), minn)
|
155 |
+
|
156 |
+
# labels[
|
157 |
+
# clamp(window_y - label_size, 0, labels.shape[0] - 1):clamp(window_y + label_size, 0, labels.shape[0] - 1),
|
158 |
+
# clamp(window_x - label_size, 0, labels.shape[0] - 1):clamp(window_x + label_size, 0, labels.shape[0] - 1),
|
159 |
+
# ] = 1
|
160 |
+
|
161 |
+
# positive_labels = labels.flatten() / labels.max()
|
162 |
+
# negative_labels = 1 - positive_labels
|
163 |
+
# pos_mask_labels = torch.flatten(mask_labels, end_dim=1)
|
164 |
+
# neg_mask_labels = 1 - pos_mask_labels
|
165 |
+
# mask_labels = torch.stack([pos_mask_labels, neg_mask_labels], dim=1)
|
166 |
+
# dataset_labels = torch.tensor(list(zip(positive_labels, negative_labels)))
|
167 |
+
# dataset = list(zip(
|
168 |
+
# get_dataset_x(blank_image, filter_size=filter_size, filter_stride=filter_stride),
|
169 |
+
# dataset_labels,
|
170 |
+
# mask_labels
|
171 |
+
# ))
|
172 |
+
# return dataset, (labels, mask_labels)
|
173 |
+
|
174 |
+
|
175 |
+
# from torchvision.models.resnet import resnet50
|
176 |
+
# from torchvision.models.resnet import ResNet50_Weights
|
177 |
+
|
178 |
+
# print("Loading resnet...")
|
179 |
+
# model = resnet50(weights=ResNet50_Weights.IMAGENET1K_V2)
|
180 |
+
# hidden_state_size = model.fc.in_features
|
181 |
+
# model.fc = torch.nn.Linear(in_features=hidden_state_size, out_features=2, bias=True)
|
182 |
+
# model.to(device)
|
183 |
+
# model.load_state_dict(torch.load("model_best_epoch_4_59.62.pth", map_location=torch.device(device)))
|
184 |
+
# model.to(device)
|
185 |
+
from segment_anything import sam_model_registry, SamAutomaticMaskGenerator, SamPredictor
|
186 |
+
|
187 |
+
model = sam_model_registry["default"](checkpoint="./sam_vit_h_4b8939.pth")
|
188 |
+
model.to(device)
|
189 |
+
|
190 |
+
predictor = SamPredictor(model)
|
191 |
+
|
192 |
+
mask_generator = SamAutomaticMaskGenerator(model)
|
193 |
+
|
194 |
+
import gradio as gr
|
195 |
+
|
196 |
+
import matplotlib.pyplot as plt
|
197 |
+
import io
|
198 |
+
|
199 |
+
def check_circularity(segmentation):
|
200 |
+
img_u8 = segmentation.astype(np.uint8)
|
201 |
+
im_gauss = cv2.GaussianBlur(img_u8, (5, 5), 0)
|
202 |
+
ret, thresh = cv2.threshold(im_gauss, 0, 255, cv2.THRESH_BINARY)
|
203 |
+
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
204 |
+
|
205 |
+
con = contours[0]
|
206 |
+
perimeter = cv2.arcLength(con, True)
|
207 |
+
area = cv2.contourArea(con)
|
208 |
+
if perimeter != 0:
|
209 |
+
circularity = 4*math.pi*(area/(perimeter*perimeter))
|
210 |
+
if 0.8 < circularity < 1.2:
|
211 |
+
return True
|
212 |
+
else:
|
213 |
+
return circularity
|
214 |
+
|
215 |
+
def count_barnacles(image_raw, split_num, progress=gr.Progress()):
|
216 |
+
progress(0, desc="Finding bounding wire")
|
217 |
+
|
218 |
+
# crop image
|
219 |
+
# h, w = raw_input_img.shape[:2]
|
220 |
+
# imghsv = cv2.cvtColor(raw_input_img, cv2.COLOR_RGB2HSV)
|
221 |
+
# hsvblur = cv2.GaussianBlur(imghsv, (9, 9), 0)
|
222 |
+
|
223 |
+
# lower = np.array([70, 20, 20])
|
224 |
+
# upper = np.array([130, 255, 255])
|
225 |
+
|
226 |
+
# color_mask = cv2.inRange(hsvblur, lower, upper)
|
227 |
+
|
228 |
+
# invert = cv2.bitwise_not(color_mask)
|
229 |
+
|
230 |
+
# contours, _ = cv2.findContours(invert, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
|
231 |
+
|
232 |
+
# max_contour = contours[0]
|
233 |
+
# largest_area = 0
|
234 |
+
# for index, contour in enumerate(contours):
|
235 |
+
# area = cv2.contourArea(contour)
|
236 |
+
# if area > largest_area:
|
237 |
+
# if cv2.pointPolygonTest(contour, (w / 2, h / 2), False) == 1:
|
238 |
+
# largest_area = area
|
239 |
+
# max_contour = contour
|
240 |
+
|
241 |
+
# x, y, w, h = cv2.boundingRect(max_contour)
|
242 |
+
|
243 |
+
|
244 |
+
# image = cv2.cvtColor(image_raw, cv2.COLOR_BGR2RGB)
|
245 |
+
# image = Image.fromarray(image_raw)
|
246 |
+
# image = image[:,:,::-1]
|
247 |
+
# image = image_raw
|
248 |
+
# print(image.shape)
|
249 |
+
# print(type(image))
|
250 |
+
# print(image.dtype)
|
251 |
+
# print(image)
|
252 |
+
corners = wireframe_extractor(image_raw)
|
253 |
+
print(corners) # (0, 0, 1254, 1152)
|
254 |
+
|
255 |
+
cropped_image = image_raw[corners[1]:corners[3]+corners[1], corners[0]:corners[2]+corners[0], :]
|
256 |
+
|
257 |
+
print(cropped_image.shape)
|
258 |
+
# cropped_image = cropped_image[100:400, 100:400]
|
259 |
+
# print(cropped_image)
|
260 |
+
|
261 |
+
|
262 |
+
# progress(0, desc="Generating Masks by point in window")
|
263 |
+
|
264 |
+
# # get center point of windows
|
265 |
+
# predictor.set_image(image)
|
266 |
+
# mask_counter = 0
|
267 |
+
# masks = []
|
268 |
+
|
269 |
+
# for x in range(1,20, 2):
|
270 |
+
# for y in range(1,20, 2):
|
271 |
+
# point = np.array([[x*25, y*25]])
|
272 |
+
# input_label = np.array([1])
|
273 |
+
# mask, score, logit = predictor.predict(
|
274 |
+
# point_coords=point,
|
275 |
+
# point_labels=input_label,
|
276 |
+
# multimask_output=False,
|
277 |
+
# )
|
278 |
+
# if score[0] > 0.8:
|
279 |
+
# mask_counter += 1
|
280 |
+
# masks.append(mask)
|
281 |
+
|
282 |
+
# return mask_counter
|
283 |
+
split_num = 2
|
284 |
+
|
285 |
+
x_inc = int(cropped_image.shape[0]/split_num)
|
286 |
+
y_inc = int(cropped_image.shape[1]/split_num)
|
287 |
+
startx = -x_inc
|
288 |
+
|
289 |
+
mask_counter = 0
|
290 |
+
good_masks = []
|
291 |
+
centers = []
|
292 |
+
|
293 |
+
for r in range(0, split_num):
|
294 |
+
startx += x_inc
|
295 |
+
starty = -y_inc
|
296 |
+
for c in range(0, split_num):
|
297 |
+
starty += y_inc
|
298 |
+
|
299 |
+
small_image = cropped_image[starty:starty+y_inc, startx:startx+x_inc, :]
|
300 |
+
|
301 |
+
# plt.figure()
|
302 |
+
# plt.imshow(small_image)
|
303 |
+
# plt.axis('on')
|
304 |
+
|
305 |
+
masks = mask_generator.generate(small_image)
|
306 |
+
|
307 |
+
|
308 |
+
for mask in masks:
|
309 |
+
circular = check_circularity(mask['segmentation'])
|
310 |
+
if circular and mask['area']>500 and mask['area'] < 10000:
|
311 |
+
mask_counter += 1
|
312 |
+
# if cropped_image.shape != image_raw.shape:
|
313 |
+
# add_to_row = [False] * corners[0]
|
314 |
+
# temp = [False]*(corners[2]+corners[0])
|
315 |
+
# temp = [temp]*corners[1]
|
316 |
+
# new_seg = np.array(temp)
|
317 |
+
# for row in mask['segmentation']:
|
318 |
+
# row = np.append(add_to_row, row)
|
319 |
+
# new_seg = np.vstack([new_seg, row])
|
320 |
+
# mask['segmentation'] = new_seg
|
321 |
+
good_masks.append(mask)
|
322 |
+
box = mask['bbox']
|
323 |
+
centers.append((box[0] + box[2]/2 + corners[0] + startx, box[1] + box[3]/2 + corners[1] + starty))
|
324 |
+
|
325 |
+
|
326 |
+
progress(0, desc="Generating Plot")
|
327 |
+
# Create a figure with a size of 10 inches by 10 inches
|
328 |
+
fig = plt.figure(figsize=(10, 10))
|
329 |
+
|
330 |
+
# Display the image using the imshow() function
|
331 |
+
# plt.imshow(cropped_image)
|
332 |
+
plt.imshow(image_raw)
|
333 |
+
|
334 |
+
# Call the custom function show_anns() to plot annotations on top of the image
|
335 |
+
# show_anns(good_masks)
|
336 |
+
|
337 |
+
for coord in centers:
|
338 |
+
plt.scatter(coord[0], coord[1], marker="x", color="red", s=32)
|
339 |
+
|
340 |
+
# Turn off the axis
|
341 |
+
plt.axis('off')
|
342 |
+
|
343 |
+
# Get the plot as a numpy array
|
344 |
+
# buf = io.BytesIO()
|
345 |
+
# plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0)
|
346 |
+
# buf.seek(0)
|
347 |
+
# img_arr = np.frombuffer(buf.getvalue(), dtype=np.uint8)
|
348 |
+
# buf.close()
|
349 |
+
|
350 |
+
# # Decode the numpy array to an image
|
351 |
+
# annotated = cv2.imdecode(img_arr, 1)
|
352 |
+
# annotated = cv2.cvtColor(annotated, cv2.COLOR_BGR2RGB)
|
353 |
+
|
354 |
+
# # Close the figure
|
355 |
+
# plt.close(fig)
|
356 |
+
|
357 |
+
|
358 |
+
# return annotated, mask_counter, centers
|
359 |
+
return fig, mask_counter, centers
|
360 |
+
|
361 |
+
|
362 |
+
# return len(masks)
|
363 |
+
|
364 |
+
# progress(0, desc="Resizing Image")
|
365 |
+
# cropped_img = raw_input_img[x:x+w, y:y+h]
|
366 |
+
# cropped_image_tensor = torch.transpose(torch.tensor(cropped_img).to(device), 0, 2)
|
367 |
+
# resize = Resize((1500, 1500))
|
368 |
+
# input_img = cropped_image_tensor
|
369 |
+
# blank_img_copy = torch.transpose(input_img, 0, 2).to("cpu").detach().numpy().copy()
|
370 |
+
|
371 |
+
# progress(0, desc="Generating Windows")
|
372 |
+
# test_dataset = get_dataset_x(input_img)
|
373 |
+
# test_dataloader = DataLoader(test_dataset, batch_size=1024, shuffle=False)
|
374 |
+
# model.eval()
|
375 |
+
# predicted_labels_list = []
|
376 |
+
# for data in progress.tqdm(test_dataloader):
|
377 |
+
# with torch.no_grad():
|
378 |
+
# data = data.to(device)
|
379 |
+
# predicted_labels_list += [model(data)]
|
380 |
+
# predicted_labels = torch.cat(predicted_labels_list)
|
381 |
+
# x = int(math.sqrt(predicted_labels.shape[0]))
|
382 |
+
# predicted_labels = predicted_labels.reshape([x, x, 2]).detach()
|
383 |
+
# label_img = predicted_labels[:, :, :1].cpu().numpy()
|
384 |
+
# label_img -= label_img.min()
|
385 |
+
# label_img /= label_img.max()
|
386 |
+
# label_img = (label_img * 255).astype(np.uint8)
|
387 |
+
# mask = np.array(label_img > 180, np.uint8)
|
388 |
+
# contours, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)\
|
389 |
+
|
390 |
+
# gt_contours = find_contours(labeled_input_img[x:x+w, y:y+h], cropped_img, np.array([59, 76, 160]))
|
391 |
+
|
392 |
+
|
393 |
+
|
394 |
+
# def extract_contour_center(cnt):
|
395 |
+
# M = cv2.moments(cnt)
|
396 |
+
# cx = int(M['m10'] / M['m00'])
|
397 |
+
# cy = int(M['m01'] / M['m00'])
|
398 |
+
# return cx, cy
|
399 |
+
|
400 |
+
# filter_width = 50
|
401 |
+
# filter_stride = 2
|
402 |
+
|
403 |
+
# def rev_window_transform(point):
|
404 |
+
# wx, wy = point
|
405 |
+
# x = int(filter_width / 2) + wx * filter_stride
|
406 |
+
# y = int(filter_width / 2) + wy * filter_stride
|
407 |
+
# return x, y
|
408 |
+
|
409 |
+
# nonempty_contours = filter(lambda cnt: cv2.contourArea(cnt) != 0, contours)
|
410 |
+
# windows = map(extract_contour_center, nonempty_contours)
|
411 |
+
# points = list(map(rev_window_transform, windows))
|
412 |
+
# for x, y in points:
|
413 |
+
# blank_img_copy = cv2.circle(blank_img_copy, (x, y), radius=4, color=(255, 0, 0), thickness=-1)
|
414 |
+
# print(f"pointlist: {len(points)}")
|
415 |
+
# return blank_img_copy, len(points)
|
416 |
+
|
417 |
+
|
418 |
+
demo = gr.Interface(count_barnacles,
|
419 |
+
inputs=[
|
420 |
+
gr.Image(type="numpy", label="Input Image"),
|
421 |
+
],
|
422 |
+
outputs=[
|
423 |
+
# gr.Image(type="numpy", label="Annotated Image"),
|
424 |
+
gr.Plot(label="Annotated Image"),
|
425 |
+
gr.Number(label="Predicted Number of Barnacles"),
|
426 |
+
gr.Dataframe(type="array", headers=["x", "y"], label="Mask centers")
|
427 |
+
# gr.Number(label="Actual Number of Barnacles"),
|
428 |
+
# gr.Number(label="Custom Metric")
|
429 |
+
])
|
430 |
+
# examples="examples")
|
431 |
+
demo.queue(concurrency_count=10).launch()
|
examples/new_blank_image.png
ADDED
examples/without_crop.png
ADDED
examples/without_crop2.png
ADDED
flagged/log.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
input_img,output 0,output 1,flag,username,timestamp
|
2 |
+
,,0,,,2023-02-22 15:46:27.797108
|
model_best_epoch_4_59.62.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f8ff81d32b5d8e4d9776386e6cbbe6baada9ea7ad95584d871bac1fea0a843cd
|
3 |
+
size 94371235
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
opencv-python
|
2 |
+
numpy
|
3 |
+
--extra-index-url https://download.pytorch.org/whl/cu113
|
4 |
+
torch
|
5 |
+
torchvision
|
6 |
+
gradio
|
7 |
+
git+https://github.com/facebookresearch/segment-anything.git
|
sam_vit_h_4b8939.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a7bf3b02f3ebf1267aba913ff637d9a2d5c33d3173bb679e46d9f338c26f262e
|
3 |
+
size 2564550879
|