Spaces:
Runtime error
Runtime error
Henry Scheible
commited on
Commit
·
fc1a0c8
1
Parent(s):
5afcf8b
add gpu support
Browse files- app.py +23 -14
- requirements.txt +1 -0
app.py
CHANGED
@@ -10,22 +10,27 @@ torch.manual_seed(12345)
|
|
10 |
random.seed(12345)
|
11 |
np.random.seed(12345)
|
12 |
|
|
|
13 |
def get_dataset_x(blank_image, filter_size=50, filter_stride=2):
|
14 |
-
full_image_tensor = torch.tensor(blank_image).type(torch.FloatTensor).permute(2,0,1).unsqueeze(0)
|
15 |
-
num_windows_h = math.floor((full_image_tensor.shape[2] - filter_size)/filter_stride) + 1
|
16 |
-
num_windows_w = math.floor((full_image_tensor.shape[3] - filter_size)/filter_stride) + 1
|
17 |
-
windows = torch.nn.functional.unfold(full_image_tensor, (filter_size, filter_size), stride=filter_stride).reshape(
|
|
|
18 |
|
19 |
dataset_images = [windows[idx] for idx in range(len(windows))]
|
20 |
dataset = list(dataset_images)
|
21 |
return dataset
|
22 |
|
|
|
23 |
from torchvision.models.resnet import resnet50
|
24 |
from torchvision.models.resnet import ResNet50_Weights
|
|
|
25 |
print("Loading resnet...")
|
26 |
model = resnet50(weights=ResNet50_Weights.IMAGENET1K_V2)
|
27 |
hidden_state_size = model.fc.in_features
|
28 |
model.fc = torch.nn.Linear(in_features=hidden_state_size, out_features=2, bias=True)
|
|
|
29 |
|
30 |
import gradio as gr
|
31 |
|
@@ -33,25 +38,27 @@ import gradio as gr
|
|
33 |
def count_barnacles(input_img, progress=gr.Progress()):
|
34 |
progress(0, desc="Loading Image")
|
35 |
test_dataset = get_dataset_x(input_img)
|
36 |
-
test_dataloader = DataLoader(test_dataset, batch_size=
|
37 |
model.eval()
|
38 |
predicted_labels_list = []
|
39 |
for data in progress.tqdm(test_dataloader):
|
40 |
with torch.no_grad():
|
|
|
41 |
predicted_labels_list += [model(data)]
|
42 |
predicted_labels = torch.cat(predicted_labels_list)
|
43 |
x = int(math.sqrt(predicted_labels.shape[0]))
|
44 |
predicted_labels = predicted_labels.reshape([x, x, 2]).detach()
|
45 |
-
label_img = predicted_labels[
|
46 |
label_img -= label_img.min()
|
47 |
label_img /= label_img.max()
|
48 |
label_img = (label_img * 255).astype(np.uint8)
|
49 |
mask = np.array(label_img > 180, np.uint8)
|
50 |
contours, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
|
|
51 |
def extract_contour_center(cnt):
|
52 |
M = cv2.moments(cnt)
|
53 |
-
cx = int(M['m10']/M['m00'])
|
54 |
-
cy = int(M['m01']/M['m00'])
|
55 |
return cx, cy
|
56 |
|
57 |
filter_width = 50
|
@@ -59,8 +66,8 @@ def count_barnacles(input_img, progress=gr.Progress()):
|
|
59 |
|
60 |
def rev_window_transform(point):
|
61 |
wx, wy = point
|
62 |
-
x = int(filter_width/2) + wx*filter_stride
|
63 |
-
y = int(filter_width/2) + wy*filter_stride
|
64 |
return x, y
|
65 |
|
66 |
nonempty_contours = filter(lambda cnt: cv2.contourArea(cnt) != 0, contours)
|
@@ -69,8 +76,10 @@ def count_barnacles(input_img, progress=gr.Progress()):
|
|
69 |
|
70 |
blank_img_copy = input_img.copy()
|
71 |
for x, y in points:
|
72 |
-
blank_img_copy = cv2.circle(blank_img_copy, (x,y), radius=4, color=(255, 0, 0), thickness=-1)
|
73 |
-
return blank_img_copy
|
|
|
74 |
|
75 |
-
demo = gr.Interface(count_barnacles, gr.Image(shape=(500, 500), type="numpy"),
|
76 |
-
|
|
|
|
10 |
random.seed(12345)
|
11 |
np.random.seed(12345)
|
12 |
|
13 |
+
|
14 |
def get_dataset_x(blank_image, filter_size=50, filter_stride=2):
|
15 |
+
full_image_tensor = torch.tensor(blank_image).type(torch.FloatTensor).permute(2, 0, 1).unsqueeze(0)
|
16 |
+
num_windows_h = math.floor((full_image_tensor.shape[2] - filter_size) / filter_stride) + 1
|
17 |
+
num_windows_w = math.floor((full_image_tensor.shape[3] - filter_size) / filter_stride) + 1
|
18 |
+
windows = torch.nn.functional.unfold(full_image_tensor, (filter_size, filter_size), stride=filter_stride).reshape(
|
19 |
+
[1, 3, 50, 50, num_windows_h * num_windows_w]).permute([0, 4, 1, 2, 3]).squeeze()
|
20 |
|
21 |
dataset_images = [windows[idx] for idx in range(len(windows))]
|
22 |
dataset = list(dataset_images)
|
23 |
return dataset
|
24 |
|
25 |
+
|
26 |
from torchvision.models.resnet import resnet50
|
27 |
from torchvision.models.resnet import ResNet50_Weights
|
28 |
+
|
29 |
print("Loading resnet...")
|
30 |
model = resnet50(weights=ResNet50_Weights.IMAGENET1K_V2)
|
31 |
hidden_state_size = model.fc.in_features
|
32 |
model.fc = torch.nn.Linear(in_features=hidden_state_size, out_features=2, bias=True)
|
33 |
+
model.to("cuda")
|
34 |
|
35 |
import gradio as gr
|
36 |
|
|
|
38 |
def count_barnacles(input_img, progress=gr.Progress()):
|
39 |
progress(0, desc="Loading Image")
|
40 |
test_dataset = get_dataset_x(input_img)
|
41 |
+
test_dataloader = DataLoader(test_dataset, batch_size=1024, shuffle=False)
|
42 |
model.eval()
|
43 |
predicted_labels_list = []
|
44 |
for data in progress.tqdm(test_dataloader):
|
45 |
with torch.no_grad():
|
46 |
+
data.to("cuda")
|
47 |
predicted_labels_list += [model(data)]
|
48 |
predicted_labels = torch.cat(predicted_labels_list)
|
49 |
x = int(math.sqrt(predicted_labels.shape[0]))
|
50 |
predicted_labels = predicted_labels.reshape([x, x, 2]).detach()
|
51 |
+
label_img = predicted_labels[:, :, :1].cpu().numpy()
|
52 |
label_img -= label_img.min()
|
53 |
label_img /= label_img.max()
|
54 |
label_img = (label_img * 255).astype(np.uint8)
|
55 |
mask = np.array(label_img > 180, np.uint8)
|
56 |
contours, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
57 |
+
|
58 |
def extract_contour_center(cnt):
|
59 |
M = cv2.moments(cnt)
|
60 |
+
cx = int(M['m10'] / M['m00'])
|
61 |
+
cy = int(M['m01'] / M['m00'])
|
62 |
return cx, cy
|
63 |
|
64 |
filter_width = 50
|
|
|
66 |
|
67 |
def rev_window_transform(point):
|
68 |
wx, wy = point
|
69 |
+
x = int(filter_width / 2) + wx * filter_stride
|
70 |
+
y = int(filter_width / 2) + wy * filter_stride
|
71 |
return x, y
|
72 |
|
73 |
nonempty_contours = filter(lambda cnt: cv2.contourArea(cnt) != 0, contours)
|
|
|
76 |
|
77 |
blank_img_copy = input_img.copy()
|
78 |
for x, y in points:
|
79 |
+
blank_img_copy = cv2.circle(blank_img_copy, (x, y), radius=4, color=(255, 0, 0), thickness=-1)
|
80 |
+
return blank_img_copy, len(list(points))
|
81 |
+
|
82 |
|
83 |
+
demo = gr.Interface(count_barnacles, gr.Image(shape=(500, 500), type="numpy"),
|
84 |
+
outputs=[gr.Image(type="numpy"), "number"])
|
85 |
+
demo.queue(concurrency_count=10).launch()
|
requirements.txt
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
opencv-python
|
2 |
numpy
|
|
|
3 |
torch
|
4 |
torchvision
|
5 |
gradio
|
|
|
1 |
opencv-python
|
2 |
numpy
|
3 |
+
--extra-index-url https://download.pytorch.org/whl/cu113
|
4 |
torch
|
5 |
torchvision
|
6 |
gradio
|