import os import gradio as gr from transformers import pipeline from huggingface_hub import login # Read the token from the environment variable HUGGINGFACE_TOKEN = os.getenv("HUGGINGFACE_TOKEN") # Authenticate with Hugging Face if HUGGINGFACE_TOKEN: login(token=HUGGINGFACE_TOKEN) else: raise ValueError("Hugging Face token not found in environment variables.") # Initialize the text generation pipeline pipe = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0") def generate_response(user_input): # Generate text based on the user's input response = pipe(user_input, max_length=100, num_return_sequences=1) # Extract the generated text generated_text = response[0]['generated_text'] return generated_text # Create the Gradio interface interface = gr.Interface( fn=generate_response, inputs=gr.Textbox(label="prompt:", lines=2, placeholder="prompt"), outputs="text", title="Gemma", description="Prompt gemma-2b" ) # Launch the Gradio app interface.launch()