Spaces:
Runtime error
Runtime error
Commit
·
9002c41
1
Parent(s):
d914d44
simple edit to make simple
Browse files
app.py
CHANGED
@@ -14,7 +14,8 @@ import numpy as np
|
|
14 |
import spaces
|
15 |
|
16 |
|
17 |
-
model_id = "google/paligemma-3b-mix-448"
|
|
|
18 |
COLORS = ['#4285f4', '#db4437', '#f4b400', '#0f9d58', '#e48ef1']
|
19 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
20 |
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id).eval().to(device)
|
@@ -64,23 +65,24 @@ def parse_segmentation(input_image, input_text):
|
|
64 |
|
65 |
######## Demo
|
66 |
|
67 |
-
INTRO_TEXT = """## PaliGemma demo\n\n
|
68 |
-
| [Github](https://github.com/google-research/big_vision/blob/main/big_vision/configs/proj/paligemma/README.md)
|
69 |
-
| [Blogpost](https://huggingface.co/blog/paligemma)
|
70 |
-
|\n\n
|
71 |
-
PaliGemma is an open vision-language model by Google, inspired by [PaLI-3](https://arxiv.org/abs/2310.09199) and
|
72 |
-
built with open components such as the [SigLIP](https://arxiv.org/abs/2303.15343)
|
73 |
-
vision model and the [Gemma](https://arxiv.org/abs/2403.08295) language model. PaliGemma is designed as a versatile
|
74 |
-
model for transfer to a wide range of vision-language tasks such as image and short video caption, visual question
|
75 |
-
answering, text reading, object detection and object segmentation.
|
76 |
-
\n\n
|
77 |
-
This space includes models fine-tuned on a mix of downstream tasks, **inferred via 🤗 transformers**.
|
78 |
-
See the [Blogpost](https://huggingface.co/blog/paligemma) and
|
79 |
-
[README](https://github.com/google-research/big_vision/blob/main/big_vision/configs/proj/paligemma/README.md)
|
80 |
-
for detailed information how to use and fine-tune PaliGemma models.
|
81 |
-
\n\n
|
82 |
-
**This is an experimental research model.** Make sure to add appropriate guardrails when using the model for applications.
|
83 |
-
"""
|
|
|
84 |
|
85 |
|
86 |
with gr.Blocks(css="style.css") as demo:
|
@@ -92,14 +94,15 @@ with gr.Blocks(css="style.css") as demo:
|
|
92 |
|
93 |
text_output = gr.Text(label="Text Output")
|
94 |
chat_btn = gr.Button()
|
95 |
-
tokens = gr.Slider(
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
)
|
|
|
103 |
|
104 |
chat_inputs = [
|
105 |
image,
|
@@ -127,34 +130,34 @@ with gr.Blocks(css="style.css") as demo:
|
|
127 |
examples=examples,
|
128 |
inputs=chat_inputs,
|
129 |
)
|
130 |
-
with gr.Tab("Segment/Detect"):
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
|
159 |
|
160 |
|
@@ -323,4 +326,4 @@ def extract_objs(text, width, height, unique_labels=False):
|
|
323 |
#########
|
324 |
|
325 |
if __name__ == "__main__":
|
326 |
-
demo.queue(max_size=10).launch(debug=True)
|
|
|
14 |
import spaces
|
15 |
|
16 |
|
17 |
+
# model_id = "google/paligemma-3b-mix-448"
|
18 |
+
model_id = "hermanhelf/paligemma"
|
19 |
COLORS = ['#4285f4', '#db4437', '#f4b400', '#0f9d58', '#e48ef1']
|
20 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
21 |
model = PaliGemmaForConditionalGeneration.from_pretrained(model_id).eval().to(device)
|
|
|
65 |
|
66 |
######## Demo
|
67 |
|
68 |
+
INTRO_TEXT = # """## PaliGemma demo\n\n
|
69 |
+
# | [Github](https://github.com/google-research/big_vision/blob/main/big_vision/configs/proj/paligemma/README.md)
|
70 |
+
# | [Blogpost](https://huggingface.co/blog/paligemma)
|
71 |
+
# |\n\n
|
72 |
+
# PaliGemma is an open vision-language model by Google, inspired by [PaLI-3](https://arxiv.org/abs/2310.09199) and
|
73 |
+
# built with open components such as the [SigLIP](https://arxiv.org/abs/2303.15343)
|
74 |
+
# vision model and the [Gemma](https://arxiv.org/abs/2403.08295) language model. PaliGemma is designed as a versatile
|
75 |
+
# model for transfer to a wide range of vision-language tasks such as image and short video caption, visual question
|
76 |
+
# answering, text reading, object detection and object segmentation.
|
77 |
+
# \n\n
|
78 |
+
# This space includes models fine-tuned on a mix of downstream tasks, **inferred via 🤗 transformers**.
|
79 |
+
# See the [Blogpost](https://huggingface.co/blog/paligemma) and
|
80 |
+
# [README](https://github.com/google-research/big_vision/blob/main/big_vision/configs/proj/paligemma/README.md)
|
81 |
+
# for detailed information how to use and fine-tune PaliGemma models.
|
82 |
+
# \n\n
|
83 |
+
# **This is an experimental research model.** Make sure to add appropriate guardrails when using the model for applications.
|
84 |
+
# """
|
85 |
+
INTRO_TEXT = "## Demo\n\n"
|
86 |
|
87 |
|
88 |
with gr.Blocks(css="style.css") as demo:
|
|
|
94 |
|
95 |
text_output = gr.Text(label="Text Output")
|
96 |
chat_btn = gr.Button()
|
97 |
+
# tokens = gr.Slider(
|
98 |
+
# label="Max New Tokens",
|
99 |
+
# info="Set to larger for longer generation.",
|
100 |
+
# minimum=10,
|
101 |
+
# maximum=100,
|
102 |
+
# value=20,
|
103 |
+
# step=10,
|
104 |
+
# )
|
105 |
+
tokens = 20
|
106 |
|
107 |
chat_inputs = [
|
108 |
image,
|
|
|
130 |
examples=examples,
|
131 |
inputs=chat_inputs,
|
132 |
)
|
133 |
+
# with gr.Tab("Segment/Detect"):
|
134 |
+
# image = gr.Image(type="pil")
|
135 |
+
# seg_input = gr.Text(label="Entities to Segment/Detect")
|
136 |
+
# seg_btn = gr.Button("Submit")
|
137 |
+
# annotated_image = gr.AnnotatedImage(label="Output")
|
138 |
+
|
139 |
+
# examples = [["./cats.png", "segment cats"],
|
140 |
+
# ["./bee.jpg", "detect bee"],
|
141 |
+
# ["./examples/barsik.jpg", "segment cat"],
|
142 |
+
# ["./bird.jpg", "segment bird ; bird ; plant"]]
|
143 |
+
# gr.Markdown("Example images are licensed CC0 by [akolesnikoff@](https://github.com/akolesnikoff), [mbosnjak@](https://github.com/mbosnjak), [maximneumann@](https://github.com/maximneumann) and [merve](https://huggingface.co/merve).")
|
144 |
+
# gr.Examples(
|
145 |
+
# examples=examples,
|
146 |
+
# inputs=[image, seg_input],
|
147 |
+
# )
|
148 |
+
|
149 |
+
# seg_inputs = [
|
150 |
+
# image,
|
151 |
+
# seg_input
|
152 |
+
# ]
|
153 |
+
# seg_outputs = [
|
154 |
+
# annotated_image
|
155 |
+
# ]
|
156 |
+
# seg_btn.click(
|
157 |
+
# fn=parse_segmentation,
|
158 |
+
# inputs=seg_inputs,
|
159 |
+
# outputs=seg_outputs,
|
160 |
+
# )
|
161 |
|
162 |
|
163 |
|
|
|
326 |
#########
|
327 |
|
328 |
if __name__ == "__main__":
|
329 |
+
demo.queue(max_size=10).launch(debug=True)
|