hermi612 commited on
Commit
ead4a96
·
verified ·
1 Parent(s): 585329a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +36 -60
app.py CHANGED
@@ -1,64 +1,40 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
 
4
+ # 使用 Hugging Face Inference API 调用云端模型(无需本地加载)
5
+ client = InferenceClient(token="hf_your_token")
6
+
7
+ def medical_chat(user_input, history):
8
+ # 构建医学对话 prompt
9
+ prompt = f"患者:{user_input}\n医生:"
10
+
11
+ # 调用云端模型(示例使用微软BioGPT)
12
+ response = client.text_generation(
13
+ prompt=prompt,
14
+ model="microsoft/BioGPT-Large",
15
+ max_new_tokens=150,
16
+ temperature=0.7,
17
+ repetition_penalty=1.2
18
+ )
19
+
20
+ # 提取医生回复部分
21
+ doctor_response = response.split("医生:")[-1].strip()
22
+
23
+ # 添加安全过滤
24
+ if "死亡" in doctor_response or "癌症" in doctor_response:
25
+ return "⚠️ 请及时联系线下医疗机构进行专业诊断!"
26
+
27
+ return doctor_response
28
+
29
+ # 构建 Gradio 界面
30
+ with gr.Blocks(theme=gr.themes.Soft()) as demo:
31
+ gr.Markdown("# 🏥 在线医疗问诊系统 (AI版)")
32
+ gr.ChatInterface(
33
+ fn=medical_chat,
34
+ examples=["头痛三天了怎么办?", "接种疫苗后发烧正常吗?"],
35
+ title="症状咨询示例"
36
+ )
37
+
38
+ # 启动应用(Hugging Face Spaces 会自动处理)
39
+ demo.launch(debug=False)
40