import streamlit as st from typing import List from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("juierror/text-to-sql-with-table-schema") model = AutoModelForSeq2SeqLM.from_pretrained("juierror/text-to-sql-with-table-schema") t = st.text_input('enter tables') q = st.text_input('enter question') def prepare_input(question: str, table: str): table_prefix = "table:" question_prefix = "question:" inputs = f"{question_prefix} {question} {table_prefix} {table}" input_ids = tokenizer(inputs, max_length=700, return_tensors="pt").input_ids return input_ids def inference(question: str, table: str) -> str: input_data = prepare_input(question=question, table=table) input_data = input_data.to(model.device) outputs = model.generate(inputs=input_data, num_beams=10, top_k=10, max_length=700) result = tokenizer.decode(token_ids=outputs[0], skip_special_tokens=True) return result st.write(inference(q,t))