Spaces:
Sleeping
Sleeping
import os | |
import streamlit as st | |
from st_aggrid import AgGrid | |
import pandas as pd | |
from transformers import pipeline, T5ForConditionalGeneration, T5Tokenizer | |
import matplotlib.pyplot as plt | |
# Set the page layout for Streamlit | |
st.set_page_config(layout="wide") | |
# Initialize TAPAS pipeline | |
tqa = pipeline(task="table-question-answering", | |
model="google/tapas-large-finetuned-wtq", | |
device="cpu") | |
# Initialize T5 tokenizer and model for text generation | |
t5_tokenizer = T5Tokenizer.from_pretrained("t5-small") | |
t5_model = T5ForConditionalGeneration.from_pretrained("t5-small") | |
# Title and Introduction | |
st.title("Table Question Answering and Data Analysis App") | |
st.markdown(""" | |
This app allows you to upload a table (CSV or Excel) and ask questions about the data. | |
Based on your question, it will provide the corresponding answer using the **TAPAS** model and additional data processing. | |
### Available Features: | |
- **mean()**: For "average", it computes the mean of the entire numeric DataFrame. | |
- **sum()**: For "sum", it calculates the sum of all numeric values in the DataFrame. | |
- **max()**: For "max", it computes the maximum value in the DataFrame. | |
- **min()**: For "min", it computes the minimum value in the DataFrame. | |
- **count()**: For "count", it counts the non-null values in the entire DataFrame. | |
""") | |
# File uploader in the sidebar | |
file_name = st.sidebar.file_uploader("Upload file:", type=['csv', 'xlsx']) | |
# File processing and question answering | |
if file_name is None: | |
st.markdown('<p class="font">Please upload an excel or csv file </p>', unsafe_allow_html=True) | |
else: | |
try: | |
# Check file type and handle reading accordingly | |
if file_name.name.endswith('.csv'): | |
df = pd.read_csv(file_name, sep=';', encoding='ISO-8859-1') # Adjust encoding if needed | |
elif file_name.name.endswith('.xlsx'): | |
df = pd.read_excel(file_name, engine='openpyxl') # Use openpyxl to read .xlsx files | |
else: | |
st.error("Unsupported file type") | |
df = None | |
if df is not None: | |
numeric_columns = df.select_dtypes(include=['object']).columns | |
for col in numeric_columns: | |
df[col] = pd.to_numeric(df[col], errors='ignore') | |
st.write("Original Data:") | |
st.write(df) | |
df_numeric = df.copy() | |
df = df.astype(str) | |
# Display the first 5 rows of the dataframe in an editable grid | |
grid_response = AgGrid( | |
df.head(5), | |
fit_columns_on_grid_load=True, # Correct parameter to fit columns on grid load | |
editable=True, | |
height=300, | |
width='100%', | |
) | |
except Exception as e: | |
st.error(f"Error reading file: {str(e)}") | |
# User input for the question | |
question = st.text_input('Type your question') | |
# Process the answer using TAPAS and T5 | |
with st.spinner(): | |
if st.button('Answer'): | |
try: | |
# Process TAPAS-related questions | |
raw_answer = tqa(table=df, query=question, truncation=True) | |
# Display raw answer from TAPAS on the screen | |
st.markdown("<p style='font-family:sans-serif;font-size: 1rem;'>Raw TAPAS Answer: </p>", unsafe_allow_html=True) | |
st.write(raw_answer) # Display the raw TAPAS output | |
# Extract relevant values for Plotly | |
answer = raw_answer.get('answer', '') | |
coordinates = raw_answer.get('coordinates', []) | |
cells = raw_answer.get('cells', []) | |
st.markdown("<p style='font-family:sans-serif;font-size: 1rem;'>Relevant Data for Plotly: </p>", unsafe_allow_html=True) | |
st.write(f"Answer: {answer}") | |
st.write(f"Coordinates: {coordinates}") | |
st.write(f"Cells: {cells}") | |
# If cells are returned, we will extract the corresponding values for plotting | |
if cells: | |
# Convert cell values from strings to floats for plotting | |
cell_values = [float(cell) for cell in cells if cell.replace('.', '', 1).isdigit()] | |
# Plot the data if we have valid numeric values | |
if len(cell_values) > 0: | |
# Assuming that the coordinates or answer provides context on column names | |
# You can adjust the labels or data based on the actual output | |
column_names = [f"Row {i+1}" for i in range(len(cell_values))] | |
fig, ax = plt.subplots() | |
ax.bar(column_names, cell_values) | |
ax.set_xlabel('Rows') | |
ax.set_ylabel('Values') | |
ax.set_title('Bar Plot of TAPAS Answer') | |
# Display the plot in the Streamlit app | |
st.pyplot(fig) | |
except Exception as e: | |
st.warning(f"Error processing question or generating answer: {str(e)}") | |
st.warning("Please retype your question and make sure to use the column name and cell value correctly.") | |