hertogateis commited on
Commit
7c6e400
·
verified ·
1 Parent(s): e4382ce

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -13
app.py CHANGED
@@ -23,7 +23,7 @@ style = '''
23
  '''
24
  st.markdown(style, unsafe_allow_html=True)
25
 
26
- st.markdown('<p style="font-family:sans-serif;font-size: 1.9rem;"> HertogAI Question Answering using TAPAS</p>', unsafe_allow_html=True)
27
  st.markdown("<p style='font-family:sans-serif;font-size: 0.9rem;'>Pre-trained TAPAS model runs on max 64 rows and 32 columns data. Make sure the file data doesn't exceed these dimensions.</p>", unsafe_allow_html=True)
28
 
29
  # Initialize TAPAS pipeline
@@ -97,18 +97,15 @@ else:
97
  coordinates = raw_answer.get('coordinates', [])
98
  cells = raw_answer.get('cells', [])
99
 
100
- # Create a base sentence
101
- if aggregator:
102
- base_sentence = f"The {aggregator.lower()} of the selected data is {answer}."
103
- if coordinates and cells:
104
- rows_info = [f"Row {coordinate[0]+1}, Column {df.columns[coordinate[1]]} with value {cell}"
105
- for coordinate, cell in zip(coordinates, cells)]
106
- rows_description = " and ".join(rows_info)
107
- base_sentence += f" This includes the following data: {rows_description}."
108
- else:
109
- base_sentence = f"The answer is: {answer}"
110
-
111
- # Construct the full input for T5 model by including the original question
112
  input_text = f"Given the question: '{question}', generate a more human-readable response: {base_sentence}"
113
 
114
  # Tokenize the input and generate a fluent response using T5
 
23
  '''
24
  st.markdown(style, unsafe_allow_html=True)
25
 
26
+ st.markdown('<p style="font-family:sans-serif;font-size: 1.9rem;"> HertogAI Q&A using TAPAS and Model Language</p>', unsafe_allow_html=True)
27
  st.markdown("<p style='font-family:sans-serif;font-size: 0.9rem;'>Pre-trained TAPAS model runs on max 64 rows and 32 columns data. Make sure the file data doesn't exceed these dimensions.</p>", unsafe_allow_html=True)
28
 
29
  # Initialize TAPAS pipeline
 
97
  coordinates = raw_answer.get('coordinates', [])
98
  cells = raw_answer.get('cells', [])
99
 
100
+ # Construct a base sentence replacing 'SUM' with the query term
101
+ base_sentence = f"The {question.lower()} of the selected data is {answer}."
102
+ if coordinates and cells:
103
+ rows_info = [f"Row {coordinate[0] + 1}, Column '{df.columns[coordinate[1]]}' with value {cell}"
104
+ for coordinate, cell in zip(coordinates, cells)]
105
+ rows_description = " and ".join(rows_info)
106
+ base_sentence += f" This includes the following data: {rows_description}."
107
+
108
+ # Generate a fluent response using the T5 model, rephrasing the base sentence
 
 
 
109
  input_text = f"Given the question: '{question}', generate a more human-readable response: {base_sentence}"
110
 
111
  # Tokenize the input and generate a fluent response using T5