hertogateis commited on
Commit
d1ca2ad
·
verified ·
1 Parent(s): bf962bc

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +122 -0
app.py ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ os.environ["TOKENIZERS_PARALLELISM"] = "false"
3
+
4
+ import streamlit as st
5
+ from st_aggrid import AgGrid
6
+ import pandas as pd
7
+ from transformers import pipeline, T5ForConditionalGeneration, T5Tokenizer
8
+
9
+ st.set_page_config(layout="wide")
10
+
11
+ style = '''
12
+ <style>
13
+ body {background-color: #F5F5F5; color: #000000;}
14
+ header {visibility: hidden;}
15
+ div.block-container {padding-top:4rem;}
16
+ section[data-testid="stSidebar"] div:first-child {
17
+ padding-top: 0;
18
+ }
19
+ .font {
20
+ text-align:center;
21
+ font-family:sans-serif;font-size: 1.25rem;}
22
+ </style>
23
+ '''
24
+ st.markdown(style, unsafe_allow_html=True)
25
+
26
+ st.markdown('<p style="font-family:sans-serif;font-size: 1.9rem;"> HertogAI Q&A table V1 using TAPAS and Text Generated</p>', unsafe_allow_html=True)
27
+ st.markdown("<p style='font-family:sans-serif;font-size: 0.9rem;'>Pre-trained TAPAS model runs on max 64 rows and 32 columns data. Make sure the file data doesn't exceed these dimensions.</p>", unsafe_allow_html=True)
28
+
29
+ # Initialize TAPAS and Hugging Face Model (T5 for NLP generation)
30
+ tqa = pipeline(task="table-question-answering",
31
+ model="google/tapas-large-finetuned-wtq",
32
+ device="cpu")
33
+
34
+ model_name = "t5-small" # You can use a larger model or GPT as needed
35
+ tokenizer = T5Tokenizer.from_pretrained(model_name)
36
+ model = T5ForConditionalGeneration.from_pretrained(model_name)
37
+
38
+ # Function to generate natural language from TAPAS output
39
+ def generate_nlp_from_tapas(tapas_output, df):
40
+ """
41
+ Use Hugging Face's T5 model to generate natural language text from TAPAS output.
42
+ """
43
+ try:
44
+ # Construct prompt using TAPAS output
45
+ answer = tapas_output['answer']
46
+ coordinates = tapas_output['coordinates']
47
+ answer_data = [df.iloc[row, col] for row, col in coordinates]
48
+
49
+ # Format the prompt for NLP model
50
+ prompt = f"Answer: {answer}. Data Location: Rows {coordinates}, Values: {answer_data}. Please summarize this information in a natural language sentence."
51
+
52
+ # Tokenize input and generate response
53
+ inputs = tokenizer.encode(prompt, return_tensors="pt", truncation=True, max_length=512)
54
+ outputs = model.generate(inputs, max_length=100, num_beams=5, early_stopping=True)
55
+
56
+ # Decode and return the generated response
57
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
58
+ return response
59
+ except Exception as e:
60
+ return f"Error generating response: {str(e)}"
61
+
62
+
63
+ file_name = st.sidebar.file_uploader("Upload file:", type=['csv', 'xlsx'])
64
+
65
+ if file_name is None:
66
+ st.markdown('<p class="font">Please upload an excel or csv file </p>', unsafe_allow_html=True)
67
+ else:
68
+ try:
69
+ # Check file type and handle reading accordingly
70
+ if file_name.name.endswith('.csv'):
71
+ df = pd.read_csv(file_name, sep=';', encoding='ISO-8859-1') # Adjust encoding if needed
72
+ elif file_name.name.endswith('.xlsx'):
73
+ df = pd.read_excel(file_name, engine='openpyxl') # Use openpyxl to read .xlsx files
74
+ else:
75
+ st.error("Unsupported file type")
76
+ df = None
77
+
78
+ # Continue with further processing if df is loaded
79
+ if df is not None:
80
+ numeric_columns = df.select_dtypes(include=['object']).columns
81
+ for col in numeric_columns:
82
+ df[col] = pd.to_numeric(df[col], errors='ignore')
83
+
84
+ st.write("Original Data:")
85
+ st.write(df)
86
+
87
+ # Create a copy for numerical operations
88
+ df_numeric = df.copy()
89
+ df = df.astype(str)
90
+
91
+ grid_response = AgGrid(
92
+ df.head(5),
93
+ columns_auto_size_mode='FIT_CONTENTS',
94
+ editable=True,
95
+ height=300,
96
+ width='100%',
97
+ )
98
+
99
+ except Exception as e:
100
+ st.error(f"Error reading file: {str(e)}")
101
+
102
+ question = st.text_input('Type your question')
103
+
104
+ with st.spinner():
105
+ if(st.button('Answer')):
106
+ try:
107
+ # Get the raw answer from TAPAS
108
+ raw_answer = tqa(table=df, query=question, truncation=True)
109
+
110
+ st.markdown("<p style='font-family:sans-serif;font-size: 0.9rem;'> Raw Result: </p>", unsafe_allow_html=True)
111
+ st.success(raw_answer)
112
+
113
+ # Use Hugging Face's T5 model to generate NLP text from TAPAS output
114
+ final_answer = generate_nlp_from_tapas(raw_answer, df)
115
+
116
+ # Display the generated answer in a simple format
117
+ st.markdown("<p style='font-family:sans-serif;font-size: 0.9rem;'> Generated Answer: </p>", unsafe_allow_html=True)
118
+ st.success(final_answer)
119
+
120
+ except Exception as e:
121
+ st.warning(f"Error: {str(e)} - Please retype your question and ensure it is correctly formatted.")
122
+