Spaces:
Running
Running
from hugchat import hugchat | |
import time | |
from typing import Any, List, Mapping, Optional | |
from langchain.callbacks.manager import CallbackManagerForLLMRun | |
from langchain.llms.base import LLM | |
# THIS IS A CUSTOM LLM WRAPPER Based on hugchat library | |
# Reference : | |
# - Langchain custom LLM wrapper : https://python.langchain.com/docs/modules/model_io/models/llms/how_to/custom_llm | |
# - HugChat library : https://github.com/Soulter/hugging-chat-api | |
# - I am Alessandro Ciciarelli the owner of IntelligenzaArtificialeItalia.net , my dream is to democratize AI and make it accessible to everyone. | |
class HuggingChat(LLM): | |
"""HuggingChat LLM wrapper.""" | |
chatbot : Optional[hugchat.ChatBot] = None | |
email: Optional[str] = None | |
psw: Optional[str] = None | |
cookie_path : Optional[str] = None | |
conversation : Optional[str] = None | |
model: Optional[int] = 0 # 0 = OpenAssistant/oasst-sft-6-llama-30b-xor , 1 = meta-llama/Llama-2-70b-chat-hf | |
temperature: Optional[float] = 0.9 | |
top_p: Optional[float] = 0.95 | |
repetition_penalty: Optional[float] = 1.2 | |
top_k: Optional[int] = 50 | |
truncate: Optional[int] = 1024 | |
watermark: Optional[bool] = False | |
max_new_tokens: Optional[int] = 1024 | |
stop: Optional[list] = ["</s>"] | |
return_full_text: Optional[bool] = False | |
stream_resp: Optional[bool] = True | |
use_cache: Optional[bool] = False | |
is_retry: Optional[bool] = False | |
retry_count: Optional[int] = 5 | |
avg_response_time: float = 0.0 | |
log : Optional[bool] = False | |
def _llm_type(self) -> str: | |
return "🤗CUSTOM LLM WRAPPER Based on hugging-chat-api library" | |
def create_chatbot(self) -> None: | |
if not any([self.email, self.psw, self.cookie_path]): | |
raise ValueError("email, psw, or cookie_path is required.") | |
try: | |
if self.cookie_path: | |
cookies = hugchat.ChatBot(cookie_path=self.cookie_path) | |
elif self.email and self.psw: | |
# Create a ChatBot using email and psw | |
from hugchat.login import Login | |
start_time = time.time() | |
sign = Login(self.email, self.psw) | |
cookies = sign.login() | |
# save cookies to cookie_path | |
if self.cookie_path: | |
sign.save_cookies(self.cookie_path) | |
end_time = time.time() | |
if self.log : print(f"\n[LOG] Login successfull in {round(end_time - start_time)} seconds") | |
# else: | |
# # Create a ChatBot using cookie_path | |
# cookies = self.cookie_path and hugchat.ChatBot(cookie_path=self.cookie_path) | |
self.chatbot = cookies.get_dict() and hugchat.ChatBot(cookies=cookies.get_dict()) | |
if self.log : print(f"[LOG] LLM WRAPPER created successfully") | |
except Exception as e: | |
raise ValueError("LogIn failed. Please check your credentials or cookie_path. " + str(e)) | |
# Setup ChatBot info | |
self.chatbot.switch_llm(self.model) | |
if self.log : print(f"[LOG] LLM WRAPPER switched to model { 'OpenAssistant/oasst-sft-6-llama-30b-xor' if self.model == 0 else 'meta-llama/Llama-2-70b-chat-hf'}") | |
self.conversation = self.conversation or self.chatbot.new_conversation() | |
self.chatbot.change_conversation(self.conversation) | |
if self.log : print(f"[LOG] LLM WRAPPER changed conversation to {self.conversation}\n") | |
def _call( | |
self, | |
prompt: str, | |
stop: Optional[List[str]] = None, | |
run_manager: Optional[CallbackManagerForLLMRun] = None, | |
**kwargs: Any, | |
) -> str: | |
if stop: | |
raise ValueError("stop kwargs are not permitted.") | |
self.create_chatbot() if not self.chatbot else None | |
try: | |
if self.log : print(f"[LOG] LLM WRAPPER called with prompt: {prompt}") | |
start_time = time.time() | |
resp = self.chatbot.chat( | |
prompt, | |
temperature=self.temperature, | |
top_p=self.top_p, | |
repetition_penalty=self.repetition_penalty, | |
top_k=self.top_k, | |
truncate=self.truncate, | |
watermark=self.watermark, | |
max_new_tokens=self.max_new_tokens, | |
stop=self.stop, | |
return_full_text=self.return_full_text, | |
stream=self.stream_resp, | |
use_cache=self.use_cache, | |
is_retry=self.is_retry, | |
retry_count=self.retry_count, | |
) | |
end_time = time.time() | |
self.avg_response_time = (self.avg_response_time + (end_time - start_time)) / 2 if self.avg_response_time else end_time - start_time | |
if self.log : print(f"[LOG] LLM WRAPPER response time: {round(end_time - start_time)} seconds") | |
if self.log : print(f"[LOG] LLM WRAPPER avg response time: {round(self.avg_response_time)} seconds") | |
if self.log : print(f"[LOG] LLM WRAPPER response: {resp}\n\n") | |
return str(resp) | |
except Exception as e: | |
raise ValueError("ChatBot failed, please check your parameters. " + str(e)) | |
def _identifying_params(self) -> Mapping[str, Any]: | |
"""Get the identifying parameters.""" | |
parms = { | |
"model": "HuggingChat", | |
"temperature": self.temperature, | |
"top_p": self.top_p, | |
"repetition_penalty": self.repetition_penalty, | |
"top_k": self.top_k, | |
"truncate": self.truncate, | |
"watermark": self.watermark, | |
"max_new_tokens": self.max_new_tokens, | |
"stop": self.stop, | |
"return_full_text": self.return_full_text, | |
"stream": self.stream_resp, | |
"use_cache": self.use_cache, | |
"is_retry": self.is_retry, | |
"retry_count": self.retry_count, | |
"avg_response_time": self.avg_response_time, | |
} | |
return parms | |
def _get_avg_response_time(self) -> float: | |
"""Get the average response time.""" | |
return self.avg_response_time | |