Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from torchvision import transforms
|
4 |
+
from PIL import Image
|
5 |
+
from timm import create_model
|
6 |
+
|
7 |
+
# 定义类别名称
|
8 |
+
CLASSES = [
|
9 |
+
"Class 1", "Class 2", "Class 3", # 替换为你的类别名称
|
10 |
+
]
|
11 |
+
|
12 |
+
# 加载模型
|
13 |
+
def load_model(model_path):
|
14 |
+
model = create_model('resnet18', pretrained=False, num_classes=len(CLASSES))
|
15 |
+
model.load_state_dict(torch.load(model_path, map_location=torch.device('cpu')))
|
16 |
+
model.eval()
|
17 |
+
return model
|
18 |
+
|
19 |
+
model = load_model("model.pth")
|
20 |
+
|
21 |
+
# 定义图像预处理
|
22 |
+
def preprocess_image(image):
|
23 |
+
transform = transforms.Compose([
|
24 |
+
transforms.Resize((224, 224)),
|
25 |
+
transforms.ToTensor(),
|
26 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
|
27 |
+
])
|
28 |
+
return transform(image).unsqueeze(0)
|
29 |
+
|
30 |
+
# 定义推理函数
|
31 |
+
def classify_image(image):
|
32 |
+
image = preprocess_image(image)
|
33 |
+
with torch.no_grad():
|
34 |
+
outputs = model(image)
|
35 |
+
probabilities = torch.nn.functional.softmax(outputs[0], dim=0)
|
36 |
+
confidences = {CLASSES[i]: float(probabilities[i]) for i in range(len(CLASSES))}
|
37 |
+
return confidences
|
38 |
+
|
39 |
+
# 创建 Gradio 接口
|
40 |
+
title = "Bird Species Classifier"
|
41 |
+
description = "Upload an image of a bird, and the model will predict its species."
|
42 |
+
|
43 |
+
interface = gr.Interface(
|
44 |
+
fn=classify_image,
|
45 |
+
inputs=gr.Image(type="pil"),
|
46 |
+
outputs=gr.Label(num_top_classes=3),
|
47 |
+
title=title,
|
48 |
+
description=description,
|
49 |
+
)
|
50 |
+
|
51 |
+
if __name__ == "__main__":
|
52 |
+
interface.launch()
|