Geraldine J commited on
Commit
fc237d8
1 Parent(s): 8c9db40

Update dataframe

Browse files
Files changed (1) hide show
  1. app.py +8 -23
app.py CHANGED
@@ -41,6 +41,7 @@ from botocore.exceptions import NoCredentialsError
41
  import tempfile
42
  import io
43
  from PIL import Image
 
44
  # Images
45
  torch.hub.download_url_to_file('https://i.pinimg.com/564x/18/0b/00/180b00e454362ff5caabe87d9a763a6f.jpg', 'ejemplo1.jpg')
46
  torch.hub.download_url_to_file('https://i.pinimg.com/564x/3b/2f/d4/3b2fd4b6881b64429f208c5f32e5e4be.jpg', 'ejemplo2.jpg')
@@ -53,27 +54,11 @@ region = os.environ['region']
53
  def removeStr(string):
54
  return string.replace(" ", "")
55
 
56
- def arrayLista(a,b,c,d):
57
- x = re.findall("obo Mar", b)
58
- y = re.findall("elica", b)
59
- z = re.findall("elica", d)
60
- if x:
61
- b = 'Lobo marino'
62
- if y:
63
- b = 'Pelicano'
64
- if z:
65
- d = 'Pelicano'
66
- if(b=='Lobo marino' or b=='Pelicano'):
67
- strlist =[]
68
- strlist2 =[]
69
- strlist.append(removeStr(a))
70
- strlist.append(b)
71
- if d=='Pelicano':
72
- strlist2.append(removeStr(c))
73
- strlist2.append(d)
74
- strlista = [strlist,strlist2]
75
- df = pd.DataFrame(strlista,columns=['Cantidad','Especie'])
76
- return df
77
 
78
  #Imagen temporal guardada en upload_file
79
  def tempFileJSON(img_file):
@@ -158,7 +143,7 @@ def yolo(size, iou, conf, im):
158
  fileImg = tempFileJSON(im_bytes)
159
  #Enviando la informacion al contador de especies
160
  results6 = qtyEspecies(results5,results3,fileImg)
161
- lista2 = arrayLista(results3[19:21],results3[22:32], results3[34:36], results3[37:45])
162
  return Image.fromarray(results2.ims[0]), lista2, results6
163
  except Exception as e:
164
  logging.error(e, exc_info=True)
@@ -171,7 +156,7 @@ in3 = gr.inputs.Slider(minimum=0, maximum=1, step=0.05, default=0.50, label='Umb
171
  in4 = gr.inputs.Image(type='pil', label="Original Image")
172
 
173
  out2 = gr.outputs.Image(type="pil", label="Identificaci贸n con Yolov5")
174
- out3 = gr.outputs.Dataframe(label="Descripci贸n", headers=['Cantidad','Especie'])
175
  out4 = gr.outputs.JSON(label="JSON")
176
  #-------------- Text-----
177
  title = 'OceanApp'
 
41
  import tempfile
42
  import io
43
  from PIL import Image
44
+ from pandas import json_normalize
45
  # Images
46
  torch.hub.download_url_to_file('https://i.pinimg.com/564x/18/0b/00/180b00e454362ff5caabe87d9a763a6f.jpg', 'ejemplo1.jpg')
47
  torch.hub.download_url_to_file('https://i.pinimg.com/564x/3b/2f/d4/3b2fd4b6881b64429f208c5f32e5e4be.jpg', 'ejemplo2.jpg')
 
54
  def removeStr(string):
55
  return string.replace(" ", "")
56
 
57
+ def arrayListax(json_data):
58
+ dict = json_data
59
+ df2 = json_normalize(dict['detail'])
60
+ #df = pd.DataFrame(df2,columns=['Cantidad','Especie'])
61
+ return df2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
  #Imagen temporal guardada en upload_file
64
  def tempFileJSON(img_file):
 
143
  fileImg = tempFileJSON(im_bytes)
144
  #Enviando la informacion al contador de especies
145
  results6 = qtyEspecies(results5,results3,fileImg)
146
+ lista2 = arrayListax(results6)
147
  return Image.fromarray(results2.ims[0]), lista2, results6
148
  except Exception as e:
149
  logging.error(e, exc_info=True)
 
156
  in4 = gr.inputs.Image(type='pil', label="Original Image")
157
 
158
  out2 = gr.outputs.Image(type="pil", label="Identificaci贸n con Yolov5")
159
+ out3 = gr.outputs.Dataframe(type="pandas", label="Descripci贸n", headers=['Cantidad','Especie'])
160
  out4 = gr.outputs.JSON(label="JSON")
161
  #-------------- Text-----
162
  title = 'OceanApp'